The Chrysanthemum lavandulifolium ClNAC9 Gene Positively Regulates Saline, Alkaline, and Drought Stress in Transgenic Chrysanthemum grandiflora

in Journal of the American Society for Horticultural Science

The NAC transcription factor is a peculiar kind of transcription factor in plants. Transcription factors are involved in the expression of plant genes under different conditions, and they play a crucial role in plant response to various biotic and abiotic stress. We transferred the ClNAC9 gene into Chrysanthemum grandiflora ‘niu9717’ by Agrobacterium tumefaciens–mediated transformation. The results of kanamycin-resistant screening, polymerase chain reaction (PCR) detection, and Northern blot analysis proved that the target gene had been integrated into the genome of the target plants. Wild-type (WT) plants and transgenic plants were treated with different concentrations of NaCl, NaHCO3, and drought stress, and physiological indexes, such as antioxidant system activity (superoxide dismutase, peroxidase, catalase), malondialdehyde accumulation, and leaf relative water content, were measured. We also observed changes in plant morphology. The physiological indexes’ changing range and extreme values suggested that transgenic plants’ resistance to salinity, alkali, and drought stress was significantly higher than WT plants. Transgenic plant growth was less inhibited compared with WT plants, indicating that the ClNAC9 gene increased the resistance of transgenic plants under the stress of salinization, alkalization, and drought.

Contributor Notes

This research was supported by the National Natural Science Foundation of China (31870687) and the Fundamental Research Funds for the Central Universities (2572017EA04).

These authors contributed equally.

Corresponding authors. E-mail: dlzhyw@nefu.edu.cn or silandai@sina.com.

Article Sections

Article Figures

  • View in gallery

    Transgenes of Chrysanthemum grandiflora. (A) Resistant callus, (B, C) resistant shoots, (D) screening resistance of seedlings, (E, F) screening resistance of seedling root.

  • View in gallery

    Polymerase chain reaction analysis of ClNAC9 fragments in transgenic Chrysanthemum grandiflora plants: M = DL2000, 1 = positive control of pBI121-ClNAC9 plasmid, 2 = negative control of untransgenic line, A1–15 = different ClNAC9 transgenic lines. Bp = base pair.

  • View in gallery

    Northern blot analysis of transgenic Chrysanthemum grandiflora plants: WT = wild type; A5, A6, A13 = ClNAC9 transgenic lines ClNAC9-5, ClNAC9-6, and ClNAC9-13.

  • View in gallery

    Effects of different concentrations of salt stress on morphology of Chrysanthemum grandiflora: (A–D) Wild-type (WT) and transgenic plants grown under 0, 100, 200, and 300 mmol·L−1 NaCl concentration.

  • View in gallery

    Effects of different concentrations of salt stress on relative water content, relative electric conductivity, malondialdehyde (MDA) accumulation and superoxide dismutase (SOD), peroxidase (POD), and catalase activity (CAT) in leaves of Chrysanthemum grandiflora. Different letters indicate significant differences (P < 0.05). FW = fresh weight.

  • View in gallery

    Effects of different concentrations of alkali stress on morphology of Chrysanthemum grandiflora: (A–D) wild-type (WT) and transgenic plants grown under 0, 50, 100, and 150 mmol·L−1 NaHCO3 concentration.

  • View in gallery

    Effects of different concentrations of alkali stress on proline content, soluble protein content, malondialdehyde (MDA) accumulation and superoxide dismutase (SOD), peroxidase (POD), and catalase activity (CAT) in leaves of Chrysanthemum grandiflora. Different letters indicate significant differences (P < 0.05). FW = fresh weight.

  • View in gallery

    Effects of different times of drought stress on morphology of Chrysanthemum grandiflora: (A–D) wild-type (WT) and transgenic plants grown under 0, 5, 10, and 15 d of drought stress.

  • View in gallery

    Effects of different times of drought stress on relative water content, chlorophyll content, malondialdehyde (MDA) accumulation and superoxide dismutase (SOD), peroxidase (POD), and catalase activity (CAT) in leaves of Chrysanthemum grandiflora. Different letters indicate significant differences (P < 0.05). FW = fresh weight.

Article References

  • AnY.M.SongL.L.LiuY.R.ShuY.J.GuoC.H.2016De novo transcriptional analysis of Alfalfa in response to saline-alkaline stressFront. Plant Sci.7931

    • Search Google Scholar
    • Export Citation
  • BalazadehS.SiddiquiH.AlluA.D.Matallana-RamirezL.P.CaldanaC.MehrniaM.ZanorM.I.KöhlerB.Mueller-RoeberB.2010A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescencePlant J.62250264

    • Search Google Scholar
    • Export Citation
  • FangY.YouJ.XieK.XieW.XiongL.2008Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in riceMol. Genet. Genomics280547563

    • Search Google Scholar
    • Export Citation
  • FujitaM.FujitaY.MaruyamaK.SekiM.HiratsuK.Ohme-TakagiM.TranL.P.Yamaguchi-ShinozakiK.ShinozakiK.2004A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathwayPlant J.39863876

    • Search Google Scholar
    • Export Citation
  • HaoY.J.WeiW.SongQ.X.ChenH.W.ZhangY.Q.WangF.ZhouH.F.LeiG.TianA.G.ZhangW.K.MaB.ZhangJ.S.ChenS.Y.2011Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plantsPlant J.68302313

    • Search Google Scholar
    • Export Citation
  • HuangH.WangY.WangS.L.WuX.YangK.NiuY.J.DaiS.L.2012Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifoliumPlant Sci.193/1941827

    • Search Google Scholar
    • Export Citation
  • JeongJ.S.KimY.S.BaekK.H.JungJ.HaS.H.YangD.C.KimM.ReuzeauC.KimJ.K.2010Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditionsPlant Physiol.153185197

    • Search Google Scholar
    • Export Citation
  • JiangG.JiangX.P.LiuJ.GaoJ.ZhangC.2014The Rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and arabidopsisPLoS One9e109415

    • Search Google Scholar
    • Export Citation
  • LiJ.R.YeX.G.AnB.Y.DuL.P.XuH.J.2012Genetic transformation of wheat: Current status and future prospectsPlant Biotechnol. Rpt.6183193

    • Search Google Scholar
    • Export Citation
  • LiY.H.LiuJ.H.XuQ.J.XuZ.R.2007Modern molecular biology module experimental guide. Higher Educ. Press Beijing China

  • LiuC.X.2015Transferring ClCBF4 into Chrysanthemum grandiflora ‘ZiYan’ mediated by Agrobaeterium tumefaeiens. Northeast Forestry Univ. Heilongjiang China MA Thesis

  • MaJ.WangF.LiM.Y.JiangQ.TanG.F.XiongA.S.2014Genome wide analysis of the NAC transcription factor family in Chinese cabbage to elucidate responses to temperature stressScientia Hort.1658290

    • Search Google Scholar
    • Export Citation
  • NakashimaK.TakasakiH.MizoiJ.ShinozakiK.Yamaguchi-ShinozakiK.2012NAC transcription factors in plant abiotic stress responsesBiochim. Biophys. Acta181997103

    • Search Google Scholar
    • Export Citation
  • NuruzzamanM.SharoniA.M.SatohK.MoumeniA.VenuprasadR.SerrajR.KumarA.LeungH.AttiaK.KikuchiS.2012Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64Mol. Gen. Genet.287389410

    • Search Google Scholar
    • Export Citation
  • OlsenA.N.ErnstH.A.LeggioL.L.SkriverK.2005NAC transcription factors: Structurally distinct, functionally diverseTrends Plant Sci.107987

    • Search Google Scholar
    • Export Citation
  • OokaH.SatohK.DoiK.NagataT.OtomoY.MurakamiK.MatsubaraK.OsatoN.KawaiJ.CarninciP.HayashizakiY.SuzukiK.KojimaK.TakaharaY.YamamotoK.KikuchiS.2003Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thalianaDNA Res.10239247

    • Search Google Scholar
    • Export Citation
  • SamiU.KhanS.U.DinJ.U.QayyumA.JaanN.E.JenksM.A.2015Heat tolerance indicators in Pakistani wheat (Triticum aestivum L.) genotypesActa Bot. Croat.74109121

    • Search Google Scholar
    • Export Citation
  • ShahS.T.PangC.FanS.SongM.ArainS.YuS.2013Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stressesGene531220234

    • Search Google Scholar
    • Export Citation
  • SinghK.FoleyR.C.Onate-SanchezL.2002Transcription factors in plant defense and stress responsesCurr. Opin. Plant Biol.5430436

  • TangY.LiuM.GaoS.ZhangZ.ZhaoX.ZhaoC.ZhangF.ChenX.2012Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobaccoPhysiol. Plant.144210224

    • Search Google Scholar
    • Export Citation
  • WangG.ZhangS.MaX.WangY.KongF.MengQ.2016aA stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stressesPhysiol. Plant.1584564

    • Search Google Scholar
    • Export Citation
  • WangJ.Y.WangJ.P.YuanH.2013A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thalianaGene521265273

    • Search Google Scholar
    • Export Citation
  • WangL.L.ZhouX.J.LiuW.Z.2016bEffects of enhanced ultraviolet-B radiation on physiological indices and camptothecin content in Camptotheca acuminata DecneActa Botanica Boreali Occidentalia Sinica36979986

    • Search Google Scholar
    • Export Citation
  • WangY.C.GuW.R.YeL.F.SunY.LiL.J.ZhangH.2015Physiological mechanisms of delaying leaf senescence in maize treated with compound mixtures of DCPTA and CCC. J. Northeast Agr. Univ. (English ed.) 22:1–15

  • WangZ.DaneF.2013NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathwayActa Physiol. Plant.3513971408

    • Search Google Scholar
    • Export Citation
  • ZhangX.ChenB.LuG.J.HanB.2009Overexpression of a NAC transcription factor enhances rice drought and salt toleranceBiochem. Biophys. Res. Commun.379985989

    • Search Google Scholar
    • Export Citation
  • ZhangY.JiangW.J.YuH.J.YangX.Y.2012Exogenous abscisic acid alleviates low temperature-induced oxidative damage in seedlings of Cucumis sativus LTrans. Chinese Soc. Agr. Eng.28221228

    • Search Google Scholar
    • Export Citation
  • ZhouM.LiD.LiZ.HuQ.YangC.ZhuL.LuoH.2013Constitutive expression of amiR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrassPlant Physiol.16113751391

    • Search Google Scholar
    • Export Citation

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 28 28 28
Full Text Views 4 4 4
PDF Downloads 2 2 2