Antioxidant Balance and Regulation in Tomato Genotypes of Different Color

in Journal of the American Society for Horticultural Science

Antioxidants, antioxidant capacity, and the expression of isoprenoid metabolism–related genes and two pigmentation-related transcription factors were studied in four native and four hybrid tomato (Solanum lycopersicum) genotypes with different-colored fruit. Red fruit genotypes were associated with greater lycopene, β-carotene, lipophilic antioxidant capacity, and greater chromoplast-specific lycopene β-cyclase (CYC-B) transcript levels. Orange fruit genotypes had greater concentrations of tocopherols and greater transcript levels of homogentisate phytyl transferase (VTE-2), 1-deoxy-D-xylulose phosphate synthase (DXS), and 4-hydroxyphenylpyruvate dioxygenase (HPPD). The yellow fruit genotype was greater in total polyphenol and hydrophilic antioxidant capacity with greater expression of geranylgeranyl reductase (GGDR), phytol kinase (VTE-5), phytoene synthase (PSY) 2, lycopene β-cyclase (LCY-B), SlNAC1, and SINAC4. Greater levels of individual antioxidants were associated with specific coloration of tomato fruit. Moreover, the negative correlations between the expression of PSY1 and VTE-5, and between lycopene and chlorophyll, suggest a balance between carotenoids, tocopherols, and chlorophylls. The results of this study support either the direct commercialization of tomatoes with different color fruit or use of their genotypes in breeding programs to increase antioxidant levels among existing cultivars.

Contributor Notes

We thank CONACYT (Consejo Nacional de Ciencia y Tecnología; scholarship 265752) and UAM (Universidad Autónoma Metropolitana) for its financial support.

Corresponding author. E-mail: or

Article Sections

Article Figures

  • View in gallery

    Studied tomato genotypes and germplasm accession codes. Native genotypes (± se): red [RN (accession code 15014, hue 44.71 ± 0.94)], orange [ON (accession code 15006-3A, hue 70.3 ± 2.2)], yellow [YN (accession code 15011, hue 81.9 ± 2.3)], purple [PN (accession code 15440, hue 56.4 ± 1.2)]. Hybrid experimental lines: light red [LRH (accession code H1329, hue 45.2 ± 4.6)], light orange [LOH (accession code H1326, hue 70 ± 3.5)], black [BH (accession code Exp. line F8, hue 62.4 ± 1.7)], chartreuse [CH (accession code Exp, line F5, hue 2.3 ± 1.5)].

  • View in gallery

    Heat map representation of log2-fold change in RNA expression of carotenoid and tocopherol-related genes and NAC transcription factors in tomato compared with the native red (RN) genotype. Tocopherol, chlorophyll, and carotenoid biosynthetic pathways adapted from Almeida et al. (2016) and Lira et al. (2016) are indicated in orange, green, and red, respectively. The genes (GGDR = geranylgeranyl reductase; HPPD = 4-hydroxyphenylpyruvate dioxygenase; PSY-1 = phytoene synthase 1; PSY-2 = phytoene synthase 2; CYC-B = chromoplast-specific lycopene β-cyclase; LCY-B = lycopene β-cyclase; DXS = 1-deoxy-D-xylulose phosphate synthase; VTE-5 = phytol kinase; VTE-2 = homogentisate phytyl transferase; MEP pathway = non-mevalonate pathway; PP/PDP = phytyl diphosphate; GGDP = geranylgeranyl diphosphate; MPBQ = 2-methyl-6-phytyl-1,4-benzoquinol; and DMBQ = 2,3-dimethyl-6-geranylgeranylbenzoquinol) are indicated by the color of the genotype that showed the greatest transcript levels (red, orange, or yellow): ON = orange native; YN = yellow native; PN = purple native; LRH = light red hybrid; LOH = light orange hybrid; CH = chartreuse hybrid; BH = black hybrid.

  • View in gallery

    Principal component analysis showing the correlation between all studied parameters in tomato genotypes (ON = orange native; YN = yellow native; PN = purple native; LRH = light red hybrid; LOH = light orange hybrid; CH = chartreuse hybrid; BH = black hybrid); TEAC = Trolox-equivalent antioxidant capacity; GGDR = geranylgeranyl reductase; HPPD = 4-hydroxyphenylpyruvate dioxygenase; PSY-1 = phytoene synthase 1; PSY-2 = phytoene synthase 2; CYC-B = chromoplast-specific lycopene β-cyclase; LCY-B = lycopene β-cyclase; DXS = 1-deoxy-D-xylulose phosphate synthase; VTE-5 = phytol kinase; VTE-2 = homogentisate phytyl transferase.

Article References

AlmeidaJ.AsísR.Noel MolineriV.SestariI.LiraB.S.CarrariF.PeresL.E.RossiM.2014Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and compositionPhytochemistry1117283

AlmeidaJ.AzevedoM.D.S.SpicherL.GlauserG.vom DorpK.GuyerL.del Valle CarranzaA.AsisR.Pereira de SouzamA.BuckeridgeM.DemarcoD.BresC.RothanC.PereiraL.E.HörtensteinerS.KesslerF.DörmannP.CarrariF.DemarcoD.2016Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific mannerJ. Expt. Bot.67919934

BaldetP.BresC.OkabeY.MauxionJ.P.JustD.BournonvilleC.MoriK.EzuraH.FerrandC.RothanC.2013Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutantsPlant Biotechnol.30309314

BarrosL.DueñasM.PinelaJ.CarvalhoA.M.BuelgaC.S.FerreiraI.C.2012Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal homegardensPlant Foods Hum. Nutr.67229234 VosR.KempeM.SchijlenE.PertejoM.A.MuirS.Santos-BuelgaC.2002High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1Plant Cell1425092526

Brand-WilliamsW.CuvelierM.E.BersetC.L.W.T.1995Use of a free radical method to evaluate antioxidant activityLebensm. Wiss. Technol.282528

Carrillo-LópezA.YahiaE.M.2014Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass spectrometryJ. Food Sci. Technol.5127202726

ChangS.PuryearJ.CairneyJ.A.1993Simple and efficient method for isolating RNA from pine treesPlant Mol. Biol. Rpt.11113116

ChangC.C.YangM.H.WenH.M.ChernJ.C.2002Estimation of total flavonoid content in propolis by two complementary colorimetric methodsYao Wu Shi Pin Fen Xi103

CostacheM.A.CampeanuG.NeataG.2012Studies concerning the extraction of chlorophyll and total carotenoids from vegetablesRom. Biotechnol. Lett.1777037708

Di Paola NaranjoR.D.OtaizaS.SaragustiA.C.BaroniV.CarranzaA.D.V.PeraltaI.E.ValleE.M.CarrariF.AsisR.2016Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivoFood Chem.206146155

GouldW.A.1992Tomato production, processing and technology. CTI Publications, Inc., Baltimore, MD

GuoF.ZhouW.ZhangJ.XuQ.DengX.2012Effect of the citrus lycopene B-cyclase transgene on carotenoid metabolism in transgenic tomato fruitsPLoS One719

HansonP.M.YangR.Y.WuJ.ChenJ.T.LedesmaD.TsouS.C.LeeT.C.2004Variation for antioxidant activity and antioxidants in tomatoJ. Amer. Soc. Hort. Sci.129704711

Hernández-SuárezM.Rodríguez-RodríguezE.Díaz-RomeroC.2008Analysis of organic acid content in cultivars of tomato harvested in TenerifeEur. Food Res. Technol.226423435

HwangI.KimY.HanJ.NouI.S.2016Orange color is associated with CYC-B expression in tomato fleshy fruitMol. Breed.36110 MaagdR.A.2014Transcriptional control of the fleshy fruit development and ripeningJ. Expt. Bot.6545274541

KleeH.J.GiovannoniJ.J.2011Genetics and control of tomato fruit ripening and quality attributesAnnu. Rev. Genet.454159

LewinsohnE.SitritY.BarE.AzulayY.IbdahM.MeirA.TadmorY.2005Not just colors—Carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruitTrends Food Sci. Technol.16407415 SouzaA.P.BuckeridgeM.S.PurgattoE.RossiM.2016Pheophytinase knockdown impacts carbon metabolism and nutraceutical content under normal growth conditions in tomatoPlant Cell Physiol.57642653

LiuL.ShaoZ.ZhangM.WangQ.2015Regulation of carotenoid metabolism in tomatoMol. Plant82839

LoisL.M.Rodriguez-ConcepcionM.GallegoF.CamposN.BoronatA.2000Carotenoid biosynthesis during tomato fruit development: Regulatory role of 1-deoxy-D-xylulose 5-phosphate synthasePlant J.22503513

López-VidalO.CamejoD.Rivera-CabreraF.KönigsbergM.Villa-Herná León-SánchezF.D.2016Mitochondrial ascorbate–glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripeningFood Chem.19410641072

MaN.FengH.MengX.LiD.YangD.WuC.MengQ.2014Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softeningBMC Plant Biol.14351

MartíR.RosellóS.Cebolla-CornejoJ.2016Tomato as a source of carotenoids and polyphenols targeted to cancer preventionCancers (Basel)858

Mène-SaffranéL.DellaPennaD.2010Biosynthesis, regulation and functions of tocochromanols in plantsPlant Physiol. Biochem.48301309

NamithaK.K.ArchanaS.N.NegiP.S.2011Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum)Food Funct.2168173

NourV.TrandafirI.IonicaM.E.2010HPLC organic acid analysis in different citrus juices under reversed phase conditionsNot. Bot. Horti Agrobot. Cluj-Napoca3844

ÖzyürekM.GüçlüK.TütemE.BaşkanK.S.ErçağE.CelikS.E.ApakR.A.2011Comprehensive review of CUPRAC methodologyAnal. Methods324392453

PerryA.RasmussenH.JohnsonE.J.2009Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg productsJ. Food Compos. Anal.22915

QuadranaL.AlmeidaJ.OtaizaS.N.DuffyT.Correa da GodoyF.AsísR.BermúdezL.FernieA.R.CarrariF.RossiM.2013Transcriptional regulation of tocopherol biosynthesis in tomatoPlant Mol. Biol.81309325

ReR.PellegriniN.ProteggenteA.PannalaA.YangM.Rice-EvansC.1999Antioxidant activity applying an improved ABTS radical cation decolorization assayFree Radic. Biol. Med.2612311237

RodríguezG.R.Pereira da CostaJ.H.PrattaG.R.ZorzoliR.PicardiL.A.2013Recursos genéticos y genómicos para mejorar la calidad del fruto en tomateAgromensajes353036

StahlW.SiesH.2003Antioxidant activity of carotenoidsMol. Aspects Med.24345351

SteinerA.A.1961A universal method for preparing nutrient solutions of a certain desired compositionPlant Soil15134154

UntergasserA.NijveenH.RaoX.BisselingT.GeurtsR.LeunissenJ.A.2007Primer3Plus, an enhanced web interface to Primer3Nucleic Acids Res.35W71W74

Villa-HernándezJ.M.DinkovaT.D.Aguilar-CaballeroR.Rivera-CabreraF.De JiménezE.S.Pérez-FloresL.J.2013Regulation of ribosome biogenesis in maize embryonic axes during germinationBiochimie9518711879

Viuda-MartosM.Sánchez-ZapataE.Sayas-BarberáE.SendraE.Pérez-ÁlvarezE.Fernández-LópezJ.2014Tomato and tomato by products. Human health benefits of lycopene and its application to meat products: A reviewCrit. Rev. Food Sci. Nutr.5410321049

WrolstadR.E.1993Color and pigment analyses in fruit products. Oregon State Univ. Agr. Expt. Sta. Bul. No. 624

ZanfiniA.CorbiniG.La RosaC.DreassiE.2010Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixturesLWT-Food Sci. Technol.436772

ZhangY.ButelliE.De StefanoR.SchoonbeekH.J.MagusinA.PagiaraniC.WellnerN.HillL.OrzaezD.GranellA.JonesJ.MartinC.2013Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray moldCurr. Biol.2310941100

ZhuM.ChenG.ZhouS.TuY.WangY.DongT.Z.2014A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulationPlant Cell Physiol.55119135

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 1351 1351 1304
Full Text Views 130 130 116
PDF Downloads 48 48 45