Associating Molecular Markers with Virus Resistance to Classify Sweetpotato Genotypes

in Journal of the American Society for Horticultural Science

Molecular markers linked to resistance to sweetpotato chlorotic stunt closterovirus [SPCSV (genus Crinivirus, family Closteroviridae)] and sweetpotato feathery mottle virus [SPFMV (genus Potyvirus, family Potyviridae)] were selected using quantitative trait loci (QTL) analysis, discriminant analysis and logistic regression. Eighty-seven F1 sweetpotato [Ipomoea batatas (L.) Lam.] genotypes from a cross of `Tanzania' and `Wagabolige' landraces were used to generate DNA marker profiles for this study. Forty-five of the clones were resistant to SPCSV while 37 were resistant to SPFMV. A combination of 232 amplified fragment length polymorphism (AFLP) markers and 37 random amplified polymorphic DNA (RAPD) markers obtained were analyzed to determine the most informative markers. All three statistical procedures revealed that AFLP marker e41m33.a contributed the greatest variation in SPCSV resistance and RAPD marker S13.1130 accounted for most of the variation in SPFMV resistance. The power of discriminant and logistic analyses is that you do not need a parent-progeny population. An evaluation of these two models indicated a classification and prediction accuracy rates of 96% with as few as four markers in a model. Both multivariate techniques identified one important discriminatory marker (e44m41.j) for SPCSV and two markers (e41m37.a and e44m36.d) for SPFMV that were not identified by QTL analysis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 19 2
PDF Downloads 56 35 2