The Effects of Carbon Dioxide Enrichment, Natural Ventilation, and Light Intensity on Growth, Photosynthesis, and Transpiration of Cauliflower Plantlets Cultured in vitro Photoautotrophically and Photomixotrophically

in Journal of the American Society for Horticultural Science

The effects of natural ventilation and CO2 enrichment during the rooting stage on the growth and the rates of photosynthesis and transpiration of in vitro cauliflower (Brassica oleracea L.) plantlets were investigated. In vitro plantlets were established in airtight or ventilated vessels with or without CO2 supplied (≈1200 μg·L-1) through gas permeable films attached to the vessel's cap for 15 days before transplanting ex vitro. Leaves generated in vitro in ventilated vessels had a higher photosynthetic rate than those produced in airtight vessels, which lead to greater leaf expansion and shoot and root dry matter accumulation during in vitro culture and acclimatization. Enhanced photosynthesis in leaves of ventilated plantlets was positively correlated with chlorophyll content. Increasing photosynthetically active radiation from 70 to 200 μmol·m-2·s-1 enhanced the growth of in vitro plantlets under ventilated conditions but it depressed photosynthesis of the leaves grown photomixotrophically with sugar and CO2 enrichment which might be due to the feedback inhibition caused by marked accumulations of sucrose and starch. Higher CO2 levels during in vitro culture enhanced photosynthesis under photoautotrophic conditions, but inhibited it under photomixotrophic conditions. Fifteen days after transplanting ex vitro, high photosynthetic ability and stomatal resistance to transpiratory water loss of ventilated plantlets in vitro had important contributions to rooting and acclimatization. Our findings show that the ventilated culture is effective for accelerating photoautotrophic growth of plantlets by increasing photosynthesis, suggesting that, especially for plantlets growing in vitro without sugar, CO2 enrichment may be necessary to enhance photosynthetic ability.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 17
PDF Downloads 87 87 13