Changes in Lipids and Electrolyte Leakage during Nonnetted Muskmelon Ripening

in Journal of the American Society for Horticultural Science

Respiration, C2H4 production, lipid composition, and electrolyte leakage were monitored during ripening of two nonnetted muskmelon (Cucumis melo L.) varieties differing in their storage life: `Clipper' (a long-storage-life variety) and `Jerac', which was used as a control. Respiration rates were comparable in both varieties. Although `Jerac' exhibited normal climacteric C2H4 production, `Clipper' continued to produce significant amounts of C2H4 until senescence. Electrolyte leakage increased with ripening and was always higher in `Jerac'. The loss of membrane integrity seems to be related to changes in the lipid composition due to a breakdown of phospholipids, an increase of sterol synthesis, and an increase in fatty acid saturation. On the contrary, in `Clipper', the absence of a major change in sterol and phospholipids content and the high level of fatty acid unsaturation suggest that membrane permeability is not greatly affected during ripening. This is consistent with the low loss of solutes measured and may delay senescence in `Clipper' fruit.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Article Information

Google Scholar

Related Content

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 5
PDF Downloads 34 34 6