Effects of Controlling pH with Hydrochloric Acid on the Growth, Yield, and Fruit Quality of Greenhouse Tomato Grown by Nutrient Film Technique

in HortTechnology
View More View Less
  • 1 Research Scientist, Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada N0R 1G0.
  • | 2 Research Associate, Ontario Agri-Food Research Foundation, 2585 Hwy #18 East, Harrow, Ontario, Canada N0R 1G0.

In growing greenhouse tomato (Lycopersicon esculentum Mill.) using the nutrient film technique (NFT), HNO3 or H3PO4 is usually added to offset the increase in pH of the recirculating solution. For economic and environmental reasons, HCl would be a possible substitute for either HNO3 or H3PO4. Therefore, experiments were initiated to evaluate HCl as an alternative acid in controlling the pH of the recirculating solution in NFT-grown greenhouse tomato. The effects of HNO3, H3PO4, and HCl on the growth, fruit yield, and fruit quality were quantified. In 1995, these effects were tested using `Trust' and `BST 7804' at a recirculating solution pH of 5.5, 6.0, or 6.5; in 1996, only `Trust' was grown at a recirculating solution pH of 6.2. In the 1995 experiment, genotypic differences in marketable fruit yield tended to be smaller when HCl was used to control the recirculating solution pH at 6.0 than when either H3PO4 or HNO3 was used. In `Trust', at a pH of 5.5 under the HCl treatment, fruit quality tended to be higher than in other treatment combinations. In 1996, over a 45-day period, the concentration of Cl that accumulated in the recirculating solution from added HCl was 313 mg·L−1 (313 ppm). There were no significant effects of the treatments on the growth, fruit quality, or yield of the crop. The total marketable yield was better when HCl had been used, likely due to high fruit production at the early part of the harvesting period. Potential savings for the season can be achieved if HCl is substituted for H3PO4 to regulate the nutrient solution pH in NFT-based greenhouse tomato production.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 55 3
PDF Downloads 199 94 12