Nitrogen and Cotton Gin Waste Enhance Effectiveness of Pine Bark Soil Amendment

in HortTechnology
View More View Less
  • 1 North Mississippi Research and Extension Center, P.O. Box 1690, Verona, MS 38879.
  • | 2 Department of Plant and Soil Sciences, 117 Dorman Hall, Box 9555, Mississippi State University, Mississippi State, MS 39762.

Urban soils are often not ideal planting sites due to removal of native topsoil or the mixing of topsoil and subsoil at the site. Adding pine bark based soil amendments to a clay soil altered soil bulk density and soil compaction which resulted in improved plant growth. Addition of nitrogen (N) or cotton gin waste to pine bark resulted in improved plant growth compared to pine bark alone. Growth of pansies (Viola × wittrockiana) during the 1999-2000 winter growing season was enhanced by the addition of pine bark plus nitrogen at 3- and 6-inch (7.6- and 15.2-cm) application rates (PBN3 and PBN6) and pine bark plus cotton gin waste at the 6 inch rate (CGW6). Plant size and flower production of vinca (Catharanthus roseus) were reduced by pine bark amendments applied at 3- or 6-inch rates (PB3 or PB6). Crapemyrtle (Lagerstroemia indica) grown in plots amended with 3 or 6 inches of pine bark plus cotton gin waste (CGW3 or CGW6) and pine bark plus nitrogen at 3- or 6-inch rates (PBN3 or PBN6) produced greater shoot growth than other amendment treatments. In some instances PB3 treatments suppressed growth. High levels of N and soluble salts derived from CGW and PBN soil amendments incorporated into the soil probably contributed to the improved plant growth observed in this experiment.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 21 7
PDF Downloads 77 34 3