Effects of Cover Crops, Nitrogen, and Tillage on Sweet Corn

in HortTechnology
View More View Less
  • 1 Community Research Service, Kentucky State University, Frankfort, KY 40601.

Effects of tillage, inorganic N, and winter cover crops on sweet corn (Zea mays) were examined in 1994, 1995, and 1996. Tillage treatments were tillage or no tillage, and N treatments were the addition of inorganic N at 0 (N0) or 200 (N+) kg·ha-1 (0 or 179 lb/acre). Winter cover crops included hairy vetch (Vicia villosa), winter rye (Secale cereale), and a vetch/rye biculture. In the N0, rye treatment, the soil was N deficient in 1994 and highly N deficient in 1995 and 1996. When vetch shoot N content was ≥150 kg·ha-1 (134 lb/acre) (1994 and 1995), addition of inorganic N did not increase corn yields, and it only increased corn foliar N concentrations by 8%. Reductions in corn yields (29%) and foliar N concentrations (24%) occurred when vetch shoot N content was only 120 kg·ha-1 (107 lb/acre) (1996) and inorganic N was not supplied. In 1994, the vetch/rye biculture supplied sufficient N for maximum corn yields, but addition of inorganic N increased yields by more than 50% in 1995 and 1996. Under tilled conditions, the vetch N contribution to corn appeared to equal (1996) or exceed (1994 and 1995) 82 kg·ha-1 (73 lb/acre) of N supplied as ammonium nitrate, whereas a mean value of 30 kg·ha-1 (27 lb/acre) was obtained for the biculture cover crop (1995 and 1996). No significant effects of tillage on sweet corn population densities were detected following vetch, but no-tillage significantly reduced corn population densities following rye (17%) or biculture (35%) cover crops compared to tillage. No-tillage did not reduce yields from emerged seedlings (per plant basis) for any cover crops. Vetch appeared to be a satisfactory N source for sweet corn when vetch N content was ≥150 kg·ha-1, and it could be used with no-tillage without yield reductions.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 65 4
PDF Downloads 381 120 2