Effects of Low-dose Electron Beam Irradiation on Respiration, Microbiology, Color, and Texture of Fresh-cut Cantaloupe

in HortTechnology

Cantaloupes (Cucumis melo) in three separate trials were cut into 1-inch cubes and irradiated at 0, 0.25, 0.5, 0.75, 1.0, 1.25, or 1.5 kGy; 0, 0.1, 0.2, 0.3, 0.4, 0.5, or 0.7 kGy; and 0, 0.3, 0.6, or 0.9 kGy, respectively. They were then stored in air at 3 °C for up to 20 days, and respiration rate, measured as carbon dioxide (CO2) production, microbiological counts [total plate count (TPC) and yeast and molds], texture, and color were measured during storage. Respiration rates were initially higher in irradiated cantaloupe. After 8 days, respiration was similar between irradiated and control fruit. Irradiation moderated increases in respiration in a dose-dependent manner. Highest irradiation doses resulted in initial TPC reductions of 1.5 log compared to the non-irradiated controls, and also prevented the 2.5 to 3 log TPC increases seen in controls after 10 to 11 days of storage. Texture differed on day 1, when controls were most firm, but irradiation maintained greater firmness than controls after day 7. Irradiation of fresh-cut cantaloupe has potential for shelf life extension and for integration with modified atmosphere packaging systems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Corresponding author; e-mail: bwelt@ufl.edu; phone: 352.392.1864, ext. 111.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 40 6
PDF Downloads 50 36 4