Deficit Irrigation Affects Growth, Yield, Vitamin C Content, and Irrigation Water Use Efficiency of Hot Pepper Grown in Soilless Culture

Adel F. Ahmed¹, Hongjun Yu¹, Xueyong Yang, and Weijie Jiang²
Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China

Additional index words: hot pepper, irrigation deficiency, saving water, vitamin C

Abstract. Hot pepper (Capsicum annuum cv. Battle) was grown in a 1:1 v/v sand-to-cotton stalk compost and subjected to four irrigation treatments: 100% of water-holding capacity (control) and 85%, 70%, and 55% of water-holding capacity, which were considered deficit irrigation treatments. All treatments were given to the plants at the first day of transplanting and continued during the whole growing season. Our results demonstrated that deficit irrigation had a negative effect on plant growth and yield. Increasing irrigation deficiency exhibited a reduction in vegetative growth, fruit parameters, and yield and a nonsignificant increase in irrigation water use efficiency and a corresponding reduction in the amount of irrigation water. Vitamin C content in fruit was significantly decreased by deficit irrigation treatments at various ripening stages. Water-holding capacity of 100% and 85%, respectively, resulted in the highest content of vitamin C obtained at the ripening stage. We concluded that ‘Battle’ hot pepper is sensitive to deficit irrigation. Supplying this cultivar with water at 85% of water-holding capacity could be a practical irrigation technique for high value of vitamin C production as well as saving a large amount of water, which outweighs the decrease in total fresh yield of fruit, especially in areas suffering from water shortage.

Available water for agriculture is becoming limited all over the world, and there is an urgent necessity to adopt effective strategies of irrigation management. Deficit irrigation is a strategy that allows a crop to tolerate some degree of water deficit to reduce costs and potentially increase income. It can lead to increased net income where water costs are high or where water supplies are limited (English and Raja, 1996).

Hot pepper (Capsicum annuum) is a crop of major economic importance and is commercially cultivated in China, Korea, East Indies, the United States, and many other countries. Its cultivation is confined to warm and semiarid countries where water is often a limiting factor for production, which makes the optimization of water management necessary. Pepper is among the most sensitive horticultural plants to deficit irrigation because of the wide range of transpiring leaf surface, high stomatal conductance (Alvino et al., 1994), and its shallow root system (Dimitrov and Ovtcharrova, 1995). Pepper fruits are a rich source of antioxidant compounds (Howard et al., 2000; Marin et al., 2004; Palevitch and Craker, 1995). Dietary antioxidants are beneficial because of their protective roles against multiple diseases such as cancer, anemia, diabetes, and cardiovascular diseases, and it is becoming increasingly important for growers who want to satisfy the demand of consumers for products with a high content of health-promoting constituents. Vitamin C is an important antioxidant compound of pepper fruits, chelating heavy metal ions (Namiki, 1990), reducing the risk of arteriosclerosis, cardiovascular diseases, and some forms of cancer (Harris, 1996).

The effect of deficit irrigation on hot pepper growth and yield is controversial. Although negative effects of deficit irrigation on pepper fruit yield have been reported by several investigators such as Abayomi et al. (2012), Dagdelen et al. (2004), Dorji et al. (2005), Ferrara et al. (2011), Gencoglan et al. (2006), Ismail (2010), Kirda et al. (2007), and Kulkarni and Phalke (2009), others found that fruit dry mass was increased (Chartzoulakis and Drosos, 1997) or unaffected by water stress (Ruiz-Lau et al., 2011). This was accompanied by a decrease in plant height, root dry weight, and root/shoot relation compared with those plants irrigated daily.

Although increasing water use efficiency by decreasing water application was proposed unattainable by Abebe (2009) because yield reduction is remarkably higher as a result of decreased water supply, Ismail (2010) found that giving 85% and 70% of the field capacity saved 41% and 85%, respectively, of the irrigation water.

Several investigators have reported a negative effect of water stress on fruit content of vitamin C such as Mahendran and Bandara (2000) on chili cultivar Aranalu and Vijitha and Mahendran (2010) on tomato. On the contrary, vitamin C content showed a 23% increase when peppers were less watered compared with high-irrigated fruit (Marin et al., 2009). An increase in vitamin C content with moderate water deficits was demonstrated by Toivonen et al. (1994) on broccoli and the same results observed in leeks grown under low irrigation frequency (Sorensen et al., 1995). Maturity stage also affects vitamin C content. Marin et al. (2009) found that green peppers grown under low irrigation frequency had similar content of vitamin C to red fruits and only the highly irrigated green fruits showed lower content of vitamin C with respect to red fruits. Navarro et al. (2006) found that red peppers had more vitamin C content than green ones. Other authors have found that vitamin C increased or remained constant as pepper fruits matured (Howard et al., 1994, 2000; Osuna-Garcia et al., 1998) and declined with further ripening (Gnayeed et al., 2001).

Thus, because of varied effects of deficit irrigation on fruit, yield, and vitamin C content in hot pepper, this study was conducted to evaluate the effects of deficit irrigation on morphological and fruit parameters, growth, and yield of ‘Battle’ hot pepper as well as vitamin C content at different ripening stages. We aimed also at determining the critical deficit irrigation level for good growth, fruit yield, and high vitamin C content of this cultivar to save a high amount of water irrigation.

Materials and Methods

A greenhouse experiment was conducted at the Soilless Culture Department, Vegetables and Flowers Institute, Chinese Academy of Agricultural Sciences, Beijing, China from May to Aug. 2012. During the growing season, the average temperature and relative humidity were 26.3 °C and 67.8%, respectively.

Growth medium and plant materials

A sand-to-cotton stalk compost (1:1 v/v) was used as a growth medium; 7 L were used per pot. The physical and chemical properties of the growth medium used in this study are presented in Table 1. The seedlings of hot pepper (Capsicum annuum cv. Battle) were transplanted at the eight-leaf stage, one plant per pot.

Fertilization

A mixture of organic and inorganic fertilizers, containing nitrogen, phosphorus, and
potassium 25% or greater, organic 25% or greater, water 20% or greater, and the effective number of living bacteria 0.2 hundred million per gram or greater was used. Before transplanting, the fertilizer was mixed with the growth medium at 10 kg·m⁻³. After transplanting, a dosage of 10 g fertilizer per pot was added three times at 20, 40, and 60 d after transplanting.

Irrigation treatments and experimental design

The maximum amount of water can held by soil or medium is known as water-holding capacity (WHC). Water-holding capacity of medium was calculated from the following equation: water-holding capacity (%) = [total porosity (%) – air space (%)]. Four irrigation treatments, 100%, 85%, 70%, and 55%, of WHC were used during the whole growing season, which will be referred to in the text as T1, T2, T3, and T4, respectively. A full irrigation treatment (T1) was considered as a control. The second, third, and the fourth treatments (T2, T3, and T4) were considered as deficit irrigation treatments. All water treatments were given to the plants on the same day of transplanting. The desired moisture contents of pots were daily monitored by HIH2 moisture meter Version 4.0 (Delta-T Devices Ltd., U.K.) and maintained through water application, if required. The experiment was organized in a completely randomized design with three replications per treatment; each replication had seven plants (21 plants per treatment).

Measurements

Morphological characteristics. At the end of the experiment, three plants were randomly selected from each treatment replication to measure some morphological parameters per plant as follows:

Plant height (cm) was measured by a ruler from the soil surface of the pot to the top of the plant. The number of branches was counted by the naked eye. Stem diameter (cm) was measured by calipers (soil surface).

Leaf area (cm²) was measured by an Area meter (AM 300 Bio Scientific Ltd., U.K.). Fresh weight of shoots (g) was weighted with digital balance. Dry weight of shoots (g) samples were dried at 60 °C until a constant weight and then weighted by the same balance. Days to flower set were calculated as the number of days from transplanting to flower set. Days to first harvest were calculated as the number of days from transplanting to first fruit maturity.

The root system was carefully removed from the pot to obtain the complete root. After several washes in water, root length (cm), fresh weight of roots (g)/plant, dry weight of roots (g)/plant, and root-to-shoot ratio were determined. Dry weight of roots (g)/plant was obtained after the samples were dried at 60 °C until they had a constant weight. Root-to-shoot ratio was calculated by dividing fresh weight of roots by the fresh weight of shoots.

Harvesting

Fruits were harvested at three periods during the season. The early period of harvesting started 48 d after transplanting (which is 30 d after flowering). The middle and late periods of harvesting started after 11 and 30 d of the first harvest, respectively. During these harvesting periods, the following characteristics were measured: number of fruits was quantified from three randomly selected plants from each treatment replication. During each harvesting period, 10 fruits were randomly selected to calculate the average of fruit length (cm), fruit diameter (cm), and fruit weight (g). Fruit yield (g)/plant was calculated from the number of fruits per plant multiplied by fruit weights per plant. Total fruit yield (g/plant) is a collection of fruit yield per plant in all three periods of harvesting. Yield reduction (%) was calculated from the following equation: yield reduction (%) = [(yield of control – yield of treatment)/yield of control] * 100. Irrigation water use efficiency was calculated according to Guang-Cheng et al. (2008) by dividing the total fresh weight of fruit (g) by the volume of irrigation water (L) applied to the plant of each treatment during the whole season.

Water saving (%) was calculated from the following equation:

\[
\text{Water saving} = \frac{\text{water consumption of control} - \text{water consumption of treatment}}{\text{water consumption of control}} \times 100
\]

Vitamin C content

Fresh fruits were sampled at 10, 20, 30, 40, 50, and 60 d after flowering for all treatments. The fruits were washed thoroughly in water. The juices were extracted after cutting the whole fruit to small pieces and 100 g of these pieces were mixed with 100 mL of oxalic acid 2%, then 10 g of this mixture was used to determine vitamin C content by using standard methods of analysis (AOAC, 1998).

Statistical analysis

Data were statistically analyzed using Statistix Version 8.1 software. Differences between means were determined using the least significant difference test at \(P < 0.05 \). The analyzed data were then presented as mean ± SD of the mean.

Results

Morphological characteristics. Data presented in Table 2 demonstrate that morphological characteristics of pepper plants were affected by deficit irrigation. In our study, restricting the water supply caused a significant decrease in plant height, stem diameter, number of branches, leaf area, and fresh and dry weights of shoots. T4 and T3 treatments, respectively, resulted in the maximum reduction relative to the control. The highest reduction in plant height was 35.09% and 19.65%, whereas the highest reduction in stem diameter was 8.69% and 5.43%. Meanwhile, the maximum reduction in number of branches was 26.18% and 23.82%. The greatest reduction in leaf area for these treatments was 19.65%, whereas the highest reduction in plant height was 35.09% and 19.65%, whereas the highest reduction in stem diameter was 8.69% and 5.43%. Meanwhile, the maximum reduction in number of branches was 26.18% and 23.82%.

Table 1. Physical and chemical properties of growth medium.

<table>
<thead>
<tr>
<th>Properties</th>
<th>BD (g·cm⁻³)</th>
<th>AS (%)</th>
<th>WHC (%)</th>
<th>TP (%)</th>
<th>EC (ms·cm⁻¹)</th>
<th>pH</th>
<th>TOC (g·kg⁻¹)</th>
<th>TN (g·kg⁻¹)</th>
<th>OM (g·kg⁻¹)</th>
<th>C/N ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1.04</td>
<td>14.34</td>
<td>40.11</td>
<td>54.45</td>
<td>1.18</td>
<td>7.86</td>
<td>84.42</td>
<td>8.41</td>
<td>145.55</td>
<td>10.05</td>
</tr>
</tbody>
</table>
| BD = bulk density; AS = air space; WHC = water-holding capacity; TP = total porosity; EC = electrical conductivity; TOC = total organic carbon; TN = total nitrogen; OM = organic matter; C/N = carbon-to-nitrogen ratio.

Table 2. Effect of deficit irrigation on certain morphological characteristics of hot pepper plant.

<table>
<thead>
<tr>
<th>WHC (%)</th>
<th>Plant ht (cm)</th>
<th>Stem diam (cm)</th>
<th>Number of branches</th>
<th>Leaf area (cm²)</th>
<th>Fresh wt shoots (g)</th>
<th>Dry wt shoots (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>93.63 ± 3.23 a</td>
<td>0.92 ± 0.03 a</td>
<td>4.66 ± 0.34 a</td>
<td>14.19 ± 0.06 a</td>
<td>201.12 ± 6.70 a</td>
<td>72.51 ± 0.49 a</td>
</tr>
<tr>
<td>T2</td>
<td>86.42 ± 2.22 b</td>
<td>0.88 ± 0.01 b</td>
<td>4.33 ± 0.33 a</td>
<td>13.76 ± 0.07 b</td>
<td>170.06 ± 9.50 b</td>
<td>63.34 ± 1.20 b</td>
</tr>
<tr>
<td>T3</td>
<td>75.23 ± 1.65 c</td>
<td>0.87 ± 0.01 bc</td>
<td>3.55 ± 0.19 b</td>
<td>13.17 ± 0.03 c</td>
<td>150.56 ± 4.50 c</td>
<td>56.08 ± 0.73 c</td>
</tr>
<tr>
<td>T4</td>
<td>60.77 ± 1.38 d</td>
<td>0.84 ± 0.02 c</td>
<td>3.44 ± 0.38 b</td>
<td>12.20 ± 0.02 d</td>
<td>108.37 ± 6.44 d</td>
<td>42.21 ± 0.53 d</td>
</tr>
<tr>
<td>*Water-holding capacity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†One hundred percent of water-holding capacity (control).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡Eighty-five percent of water-holding capacity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡Seventy percent of water-holding capacity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Fifty-five percent of water-holding capacity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Data are mean ± so (n = 3).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| †Values followed by the same letters within a column are not significantly different (P < 0.05) according to the least significant difference test.
was 14.02% and 7.74%, respectively. Furthermore, the highest reduction in fresh weight of shoots was 46.11% and 25.14%, whereas the highest reduction in dry weight of shoots was 41.78% and 22.65%, respectively.

Days to flower set and first harvesting.

Data illustrated in Figure 1 reveal that deficit irrigation caused a significant acceleration in the time of flower set and first harvesting of hot pepper. The highest acceleration in the time of flower set was 18.75% followed by 14.06% and 4.68%. Meanwhile, the maximum acceleration in the time of first harvesting was 9.31% followed by 6.22% and 2.49% for T4, T3, and T2, respectively, as compared with the control.

Fruit parameters during periods of harvesting.

The averages of fruit parameters including number, length, diameter, and weight of fruit for all irrigation treatments during periods of harvesting are shown in Table 3. Fruit number was significantly decreased by deficit irrigation during the early and middle periods of harvesting. However, during the late harvesting period, differences in fruit number were nonsignificant. During periods of harvesting, the highest fruit number was obtained from the T1 treatment followed by T2, T3, and T4, respectively, whereas increased deficit irrigation caused a significant reduction in fruit length where T1 gave the highest fruit length followed by T2, T3, and T4, respectively.

Fruit diameter and weight exhibited similar trends to fruit length as demonstrated in Table 3. Decreasing water supply caused a significant decrease in diameter and weight of fruit during periods of harvesting. The highest fruit diameter and weight were obtained from T1 followed by T2, T3, and T4 in descending order.

Fresh fruit yield and total yield. Data presented in Table 4 reveal that the highest fresh fruit yields per plant were obtained from the early period of harvesting followed by middle and late periods, respectively. Fresh fruit yield per plant during periods of harvesting and total yield were strongly affected by deficit irrigation.

Irrigation water use efficiency.

Increasing deficit irrigation led to a severe yield reduction and a corresponding reduction in the amount of irrigation water. Irrigating hot pepper at 85% of the WHC during the whole growing season reduced the total yield by 26.93% and saved 28.50% of the irrigation water. Meanwhile, irrigation at 70% and 55% of the WHC reduced the total yield by 46.55% and 63.30%, respectively, and saved 51.72% and 67.69% of the irrigation water, respectively.

Irrigation water use efficiency in this study was unaffected by deficit irrigation. Table 5 illustrates that increasing deficit irrigation resulted in a nonsignificant increase in irrigation water use efficiency. The maximum increase was 13.39% followed by 10.47% and 2.01% from T4, T3, and T2 treatments, respectively, relative to the control.

Table 3. Effect of deficit irrigation on fruit parameters of hot pepper during periods of harvesting.

<table>
<thead>
<tr>
<th>Periods of harvesting</th>
<th>WHC (%)</th>
<th>Avg of fruit number</th>
<th>Avg of fruit length (cm)</th>
<th>Avg of fruit diam (cm)</th>
<th>Avg of fruit wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1(^a)</td>
<td>100%</td>
<td>5.89 ± 0.51(^a^)</td>
<td>14.72 ± 0.45(^a^)</td>
<td>3.32 ± 0.03(^a^)</td>
<td>38.91 ± 1.72(^a^)</td>
</tr>
<tr>
<td>T2(^a)</td>
<td>85%</td>
<td>5.00 ± 0.67(^ab)</td>
<td>13.71 ± 0.07(^b)</td>
<td>2.66 ± 0.10(^b)</td>
<td>33.72 ± 0.86(^b)</td>
</tr>
<tr>
<td>T3(^a)</td>
<td>70%</td>
<td>4.44 ± 0.19(^bc)</td>
<td>13.32 ± 0.16(^c)</td>
<td>2.49 ± 0.06(^c)</td>
<td>27.32 ± 1.29(^c)</td>
</tr>
<tr>
<td>T4(^a)</td>
<td>55%</td>
<td>3.78 ± 0.69(^c)</td>
<td>11.80 ± 0.21(^c)</td>
<td>2.09 ± 0.06(^d)</td>
<td>22.23 ± 0.62(^d)</td>
</tr>
<tr>
<td>Middle period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td>5.22 ± 0.19(^a)</td>
<td>14.76 ± 0.50(^a)</td>
<td>2.91 ± 0.02(^a)</td>
<td>34.63 ± 1.72(^a)</td>
</tr>
<tr>
<td>T2</td>
<td></td>
<td>4.77 ± 0.20(^b)</td>
<td>13.34 ± 0.48(^b)</td>
<td>2.45 ± 0.10(^b)</td>
<td>27.85 ± 0.72(^b)</td>
</tr>
<tr>
<td>T3</td>
<td>5.55 ± 0.19(^b)</td>
<td>12.34 ± 0.57(^c)</td>
<td>2.42 ± 0.07(^b)</td>
<td>21.88 ± 0.50(^c)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>6.66 ± 0.34(^c)</td>
<td>11.51 ± 0.22(^c)</td>
<td>2.07 ± 0.05(^c)</td>
<td>19.23 ± 0.06(^d)</td>
<td></td>
</tr>
<tr>
<td>Late period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>4.55 ± 0.51(^a)</td>
<td>12.39 ± 0.16(^a)</td>
<td>2.50 ± 0.07(^a)</td>
<td>25.71 ± 1.80(^a)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>4.33 ± 0.67(^a)</td>
<td>10.84 ± 0.59(^b)</td>
<td>2.25 ± 0.02(^b)</td>
<td>19.56 ± 0.57(^b)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>3.89 ± 0.51(^a)</td>
<td>10.30 ± 0.75(^bc)</td>
<td>2.10 ± 0.05(^c)</td>
<td>15.70 ± 0.41(^c)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>3.66 ± 0.88(^a)</td>
<td>9.48 ± 0.37(^c)</td>
<td>1.90 ± 0.05(^d)</td>
<td>10.79 ± 0.19(^d)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a^\)Water-holding capacity.

\(^b^\)One hundred percent of water-holding capacity (control).

\(^c^\)Eighty-five percent of water-holding capacity.

\(^d^\)Seventy percent of water-holding capacity.

\(^e^\)Fifty-five percent of water-holding capacity.

\(^f^\)Data are mean ± sd (n = 3).

\(^g^\)Values followed by the same letters within a column in each period are not significantly different (P < 0.05) according to the least significant difference test.
Table 4. Effect of deficit irrigation on fresh fruit yield and total yield of hot pepper plant.

<table>
<thead>
<tr>
<th>WHC (%)</th>
<th>Early period of harvesting</th>
<th>Middle period of harvesting</th>
<th>Late period of harvesting</th>
<th>Total fruit yield (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 *</td>
<td>229.61 ± 29.24 a</td>
<td>180.64 ± 6.69 a</td>
<td>117.62 ± 20.85 a</td>
<td>527.87 ± 51.91 a</td>
</tr>
<tr>
<td>T2 v</td>
<td>168.16 ± 18.76 b</td>
<td>132.98 ± 7.62 b</td>
<td>84.55 ± 11.86 b</td>
<td>385.69 ± 34.73 b</td>
</tr>
<tr>
<td>T3 v</td>
<td>121.43 ± 10.12 c</td>
<td>99.54 ± 4.29 c</td>
<td>61.15 ± 9.39 bc</td>
<td>282.12 ± 10.02 c</td>
</tr>
<tr>
<td>T4 v</td>
<td>83.66 ± 13.25 d</td>
<td>70.43 ± 6.38 d</td>
<td>39.64 ± 10.14 c</td>
<td>193.72 ± 11.79 d</td>
</tr>
</tbody>
</table>

*Water-holding capacity.

Table 5. Effect of deficit irrigation on reduction in yield, saving water, and irrigation water use efficiency of hot pepper plant.

<table>
<thead>
<tr>
<th>WHC (%)</th>
<th>Total water applied (L/plant)</th>
<th>Saving water (%)</th>
<th>Reduction in yield (%)</th>
<th>Irrigation water use efficiency (g·L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 *</td>
<td>29.62 a</td>
<td>0.00</td>
<td>0.00</td>
<td>17.85 a</td>
</tr>
<tr>
<td>T2 v</td>
<td>21.18 b</td>
<td>28.50</td>
<td>26.93</td>
<td>18.21 a</td>
</tr>
<tr>
<td>T3 v</td>
<td>14.30 c</td>
<td>51.72</td>
<td>46.55</td>
<td>19.72 a</td>
</tr>
<tr>
<td>T4 v</td>
<td>9.57 d</td>
<td>67.69</td>
<td>63.30</td>
<td>20.24 a</td>
</tr>
</tbody>
</table>

*Water-holding capacity.

Discussion

Deficit irrigation is considered an important abiotic stress factor affecting plant growth parameters and yield. It influences plant growth at various levels from the cell to the community (Blumwald et al., 2004; Colom and Vazzana, 2001). The quantity and quality of plant growth depend on cell division, enlargement, differentiation, and all of these events are affected by water stress (Cabalas et al., 2002; Correia et al., 2001).

Our results indicated that deficit irrigation had a considerable effect on plant growth parameters, fruit, and yield of pepper. As a result of increased deficit irrigation, plant height, stem diameter, number of branches, leaf area, and fresh and dry weights of shoots were reduced. This reduction could be attributed to a reduction in leaf cell expansion and possibly by a lower rate of cell division in the plant (Savary and Ghanbari, 2012; Tadesse, 1997). Furthermore, water reduction leads to the reduction of sunlight absorption and photosynthesis level of the plant resulting from reducing leaf area, which leads to the reduction in the dry matter and plant yield production (Hong-Bo et al., 2008). Our results are also in agreement with the findings of Abayomi et al. (2012) who found that plant growth parameters of plant height, number and area of leaves per plant, and number of flowers per plant were significantly decreased by low soil moisture content.

Results, with respect to the response of plant height to water deficit, in our experiment were in agreement with the findings reported by Techawongstein et al. (1992) who demonstrated the suppression of plant height as a result of water stress in chili. Beese et al. (1982) have also reported the reduction in above-ground plant parts in chili as a result of the effect of moisture stress. Similarly, many researchers such as Hedge (1989), Jaleel et al. (2008), Khan et al. (2008), and Smittle et al. (1994) have found lower values of different plant parts as a result of water stress.

Under these experimental conditions, fruits grown under deficit irrigation were harvested earlier than well-watered ones. This early fruit harvesting is believed to be the result of an increase in stored carbohydrates (Dekoning and Hurd, 1983). Moreover, the decrease in vegetative growth and flower bud initiation resulting from low turgor might hasten reproductive maturity by decreasing competition for carbohydrate (Sylvertesn, 1985). The same results were also demonstrated by Tadesse (1997).

Our experiment identified a strong relationship between the vegetative and fruit parameters. Full irrigation improved vegetative growth parameters, which in turn led to an increase in number of fruit, yield, and total yield. On the other hand, a significant decrease in net photosynthesis rate and chlorophyll content of a leaf was observed by increasing deficit irrigation (data not shown). This reduction in net photosynthesis rate and chlorophyll content started slightly 30 to 45 d after transplanting and declined sharply afterward. This could be an explanation for the reduction in fruit parameters at middle and late periods of harvesting followed by a reduction in total yield, as was hypothesized by Hong-Bo et al. (2008). Likewise, Abayomi et al. (2012) have demonstrated that number and weights of marketable fruits of pepper were decreased by low soil moisture. Ismail (2010) has also indicated that deficit irrigation decreased
Table 6. Effect of deficit irrigation on root characteristics and root-to-shoot ratio of hot pepper plant.

<table>
<thead>
<tr>
<th>WHC (%)</th>
<th>Root length (cm)</th>
<th>Fresh wt of root (g)</th>
<th>Dry wt of root (g)</th>
<th>Root/shoot ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1†</td>
<td>39.30 ± 2.61a</td>
<td>55.34 ± 9.15 a</td>
<td>17.42 ± 3.11 a</td>
<td>0.276 ± 0.052 a</td>
</tr>
<tr>
<td>T2†</td>
<td>36.38 ± 1.34 ab</td>
<td>47.75 ± 5.96 ab</td>
<td>15.12 ± 1.60 ab</td>
<td>0.280 ± 0.020 a</td>
</tr>
<tr>
<td>T3‡</td>
<td>33.28 ± 2.06 bc</td>
<td>42.45 ± 3.91 bc</td>
<td>13.94 ± 2.52 ab</td>
<td>0.282 ± 0.031 a</td>
</tr>
<tr>
<td>T4‡</td>
<td>31.09 ± 1.02 c</td>
<td>33.27 ± 2.20 c</td>
<td>12.50 ± 0.81 b</td>
<td>0.308 ± 0.033 a</td>
</tr>
</tbody>
</table>

§Water-holding capacity.
†One hundred percent of water-holding capacity (control).
‡Eighty-five percent of water-holding capacity.
§Seventy percent of water-holding capacity.
¶Fifty-five percent of water-holding capacity.
¶¶Data are mean ± SD (n = 3).

Fig. 2. Effect of deficit irrigation on fruit content of vitamin C during different times (days after flowering) of hot pepper. T1 = 100% of water-holding capacity (control); T2 = 85% of water-holding capacity; T3 = 70% of water-holding capacity; T4 = 55% of water-holding capacity. Vertical bars denote the SD. Columns in figure that are headed with the same letter in each group separately are not significantly different (P < 0.05) according to the least significant difference test.

Because of the fact that vitamin C is very sensitive to changes in environmental conditions and it gets oxidized very rapidly when exposed to high temperatures (Davies et al., 1991), a possible reduction in vitamin C content may be the result of increased leaf temperature, which may be also the result of the lowered transpirational cooling with the onset of stress. Generally, leaf temperature progressively builds up as a consequence of moisture stress and contributes toward the reduction of vitamin C (Mahendran and Bandara, 2000).

As a matter of fact, decreased water supply to pepper plants led to more water savings. However, irrigation water use efficiency was nonsignificantly increased. This increment in irrigation water use efficiency could be explained by findings of Dorji et al. (2005); they found that total dry mass of pepper fruit per plant under deficit irrigation was similar to a non-deficit. This indicates that water movement into the fruit may have decreased with progressive development of water deficit without affecting the translocation of dry matter into the fruit. This result led to an increase in mass production per unit of water, which led to an increase in irrigation water use efficiency (Ismail, 2010). The values of irrigation water use efficiency were closer because of the reason that decreased water supply corresponds with a high reduction in yield.
Conclusion

Our results showed that hot pepper cultivar battle is a water stress-sensitive plant. Increased deficit irrigation has decreased vegetative growth and fruit parameters. Moreover, vitamin C content was decreased as deficit irrigation was increased. The highest value of vitamin C content was obtained at the ripening stage as a result of 100% or 85% of WHC treatment, which showed nonsignificant differences. Using 85% of WHC for this cultivar could be a critical deficit irrigation level for a high content of vitamin C and saving a high amount of irrigation water, which outweighs the reduction in total fresh fruit yield.

Literature Cited

Brisbane, Australia (CD-ROM) http://www.aoc.org

