Cover Crop Rotations Alter Soil Microbiology and Reduce Replant Disorders in Strawberry

Ann Toren Seigies and Marvin Pritts
Department of Horticulture, 134A Plant Science Building, Cornell University, Ithaca, NY 14853

Abstract. In July 2001, a study was established in a field with a 30-year history of perennial strawberry production to examine effects on replant disorder of 12 different species of preplant cover crops, soil fumigation (methyl bromide plus chloropicrin), and fallow management. In May 2002, strawberries (‘Jewel’) were planted into pots containing soils with the incorporated cover crops, grown for 1 year, and then fruiting. Strawberry yields in 2003 were highest in pots containing indiangrass (Sorghastrum anvenaceum) and brown mustard (Brassica juncea) -incorporated soils, resulting in 32% and 28%, respectively, higher yield than plants in pots containing untreated, bare fallow soil. Yield was lowest in fumigated soil or soil incorporated with sunnhemp (Crotalaria juncea), having 19% and 10% less yield than the fallow treatment, respectively. In Aug. 1999, a complementary study was established in a field with a 7-year history of continuous perennial strawberry production to examine the effects of single species and multiple species rotations on preplant disorder, bacterial populations, and fungal pathogens over 2 fruiting years. Cover crop treatments included various monocultures and sequences of perennial alfalfa (Medicago sativa), brown mustard, kale (Brassica oleracea ‘Winterbor’), sweet corn (Zea mays ‘Saccharata’), rye (Secale cereale), hairy vetch (Vicia villosa), marigold (Tagetes patula ‘Nema-gone’), oats (Avena sativa ‘Newdak’), and sudangrass (Sorghum bicolor × S. sudanense). The rotation was compared to the effects of fumigation using methyl bromide with chloropicrin (99:1), continuous strawberry, and bare fallow. Symptoms of replant disorder developed in the continuous strawberry plots within a few months of planting. Plants in the fumigation treatment produced greater fruit yield than all other treatments in 2003, 139% more than plants from the continuous strawberry treatment. Strawberry plants grown in the kale/sweet corn/rye treatment had consistently high yield, and both the hairy vetch/marigold/rye and the oats/sudangrass/rye treatments led to marked improvement over the continuous strawberry treatment. Plants from the brown mustard treatment also were more productive and vigorous than plants from the continuous strawberry treatment during 2002 despite having relatively low foliar biomass and a relatively high level of fungal infection on strawberry plant roots. In the field, symptoms of replant disorder were best overcome by fumigation with methyl bromide or multiple species rotations, particularly that of kale followed by sweet corn and rye. Although Rhizoctonia levels were associated with poor root health, general fungal and bacterial root infection rates were not consistently associated with the presence of visible symptoms of replant disorder nor with strawberry plant growth and productivity.

Many crops experience a decline in productivity when replanted in the same site (Savory, 1966). In strawberry, symptoms of replant disorder are poor productivity, weak root systems, root necrosis, and foliar drying (Fort and Shaw, 2000; Molot and Ferriere, 1989). Multiple cultural practices, and soil and environmental factors, have been associated with replant problems (Aldea et al., 1998; Fehrman, 1988; Mai et al., 1994; Wing, et al., 1995); also implicated are fungal pathogens (Black et al., 2003; Elmer and LaMondia, 1999; Wilhelm, 1965) and nematodes (LaMondia and Martin, 1989).

Fumigation is a commonly used approach to manage replant problems incited by biotic factors. Fumigation kills organisms responsible for plant decline (Mai and Abawi, 1981; Wilhelm, 1965) while also reducing populations of beneficial organisms. An alternate approach to managing replant problems is to create conditions favorable for plant root growth while simultaneously creating conditions unfavorable for pathogen proliferation. Cover crops potentially can accomplish both goals because they are known to enhance soil physical properties while often suppressing known pathogens (Elmer and LaMondia, 1999; Fox, 1965; LaMondia, 1999; Weller et al., 2002).

Cover crop species differ in their ability to reduce symptoms of replant disorder. Elmer and LaMondia (1999) found oats (Avena strigosa ‘Saia’ Schreb) and sorghum-sudangrass (Sorghum bicolor × S. sudanense ‘Triple S’) in rotation with strawberry reduced pathogens and nematodes. Marigold has effectively decreased disease occurrence and improved yields in sites replanted to fruit crops (Jagdale et al., 2000; Merwin et al., 2001; Reynolds et al., 2000). Species of Brassica have been shown to reduce the occurrence and severity of replant disorders by decreasing soilborne pathogens while increasing populations of pathogen-suppressing bacteria such as fluorescent pseudomonads (Mazzola et al., 2001; Sances and Ingham, 1997). Not all cover crops are suppressive of pathogens. Elmer and LaMondia (1999) and LaMondia (1999) demonstrated that population densities of soilborne strawberry pathogens were either increased or unchanged by buckwheat (Fagopyrum esculentum Moench), canola (Brassica napus L.), rye (Secale cereale L.), or ‘Garry’ oats. Differences also exist within cultivars of potentially suppressive cover crops. Mazzola and Gu (2002) found that wheat cultivars differed in their ability to suppress pathogens associated with apple replant disorder.

Our objectives were to 1) identify potential cover crops to reduce replant disorder in strawberry and 2) describe their effects on microbial populations in the root and rhizosphere. Both pot and field studies were used.

Materials and Methods

Pot study. A site consisting of a Howard gravelly loam was selected in Candor, N.Y., that had a 30-year history of nearly continuous strawberry production. Strawberry plants in the site were demonstrating poor vigor and possessed roots with lesions. Cover crop species were seeded into the site on 20 July 2001 in plots 3 m wide by 13 m long (0.0026 ha/plot) 1 wk after the previous strawberry planting was disked. Each treatment was broadcast seeded at about twice normal rates to ensure a dense stand (Table 1). Triticale (Triticum aestivum x Secale cereale or x Triticosecale) and brown mustard were seeded 1 m later when germination temperatures were more optimal for these species. Immediately after sowing, the seedbeds were packed and irrigated. If germination or establishment was low, plots were overseeded to ensure a thick stand. Plots ran perpendicular to original strawberry plant rows.

Cover crops included Japanese millet (Enchinoclora frumentacea), sorghum-sudangrass, buckwheat, cowpea (Vigna unguiculata), berseem clover (Trifolium alexandrinum), sunnhemp (Crotalaria juncea), marigold (‘Crackerjack’), brown mustard, black-eyed susan (Rudbeckia hirta), indiangrass (Sorghastrum anvenaceum), switchgrass (Panicum virgatum), and triticale. Two plots were maintained as bare fallow. These plots were not seeded to cover crops.
but were tilled periodically to keep weeds in control. The field was irrigated two additional times during the growing season and was weeded by hand once per month. On 2 Oct. 2001, 0.5 m² of aboveground biomass was cut at the soil line, dried at 45 °C for 1 week, and then weighed.

Cover crop residue was shallowly incorporated on 17 Apr. 2002. All cover crops, except the indiangrass, switchgrass, brown mustard, black-eyed susan, and berseem clover, were killed by frost the previous fall. On 6 May 2002, soils were harvested from each plot, brought to Ithaca, N.Y., and covered with a tarp to prevent wetting.

Soil from each field plot was thoroughly mixed using the method described by Dick et al. (1996). A 1-kg aliquot was removed using a sterilized hand trowel and placed in individual zip-lock bags, packed with a cooling agent and sent overnight to the Diagnostic Service at Michigan State University (East Lansing, Mich.) for analysis of the numbers and identity of plant pathogenic nematodes residing in the bulk soil.

On 9 May, each of the soils was mixed with perlite, 20% v/v in 3.8-L pots, and planted with strawberry transplants, cv. Jewel (Krohne Nursery, Hartford, Mich.), to obtain 20 potted plants per soil treatment. Additional soil from the bare fallow plot was surrounded with a polyethylene tarp, covered, and fumigated with 99:1 methyl bromide (Brom-O-Gas; Great Lakes Chemical Corp.) in Spring 2001 before applications of chemical herbicides made after field renovation. Late frosts in the Spring of 2002 require the use of overhead irrigation system to prevent frost damage. The number of frost-killed stolons produced by each plant was counted for 1-m row length per plot, brought to Ithaca, N.Y., in a field consisting of a Collamer silt loam, typic Hapludalf soil, pH 5.9, and 5.7% organic matter. The field had been planted to strawberry since 1992 and was shallowly plowed and disked before the start of the experiment. Four replicate blocks of eight treatments, consisting of five cover crop treatments on weed emergence, a representative 0.5-m² area was selected for each plot. On 10 July 2001, the initial flush of weeds was cut at soil level and separated by type. Weeds from each replicate were then identified as close to species as possible and then oven-dried for 1 week at 45 °C after which samples were weighed. Weeds were grouped into grasses or broadleaves for statistical analysis.

Table 1. Plant species, seed source, and seeding date and rate for preplant cover crops treatments used in the pot study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Seed Source</th>
<th>Seeding Rate (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactuca sativa (inoculant: Bradyrhizobium B sp. vigna)</td>
<td>Cowpea (inoculant: Bradyrhizobium B sp. vigna)</td>
<td>Peaceful Valley Farm Supply, Grass Valley, Calif.</td>
<td>184.6</td>
</tr>
<tr>
<td>Sorghum bicolor var. sudanese</td>
<td>Sorgloth-Sudangrass</td>
<td>Ihaha Agway, N.Y.</td>
<td>100</td>
</tr>
<tr>
<td>Fagopyrum esculentum</td>
<td>Buckwheat</td>
<td>Ihaha Agway, N.Y.</td>
<td>173</td>
</tr>
<tr>
<td>Vigna unguiculata</td>
<td>Cowpea</td>
<td>Peaceful Valley Farm Supply, Grass Valley, Calif.</td>
<td>134.4</td>
</tr>
<tr>
<td>Crotalaria juncea</td>
<td>Sunnhemp</td>
<td>Peaceful Valley Farm Supply, Grass Valley, Calif.</td>
<td>123.1</td>
</tr>
<tr>
<td>Trifolium alexandrinum (inoculant: Rhizobium bv. trifolii)</td>
<td>Berseem clover</td>
<td>Peaceful Valley Farm Supply, Grass Valley, Calif.</td>
<td>71.5</td>
</tr>
<tr>
<td>Brassica juncea</td>
<td>Brow mustard</td>
<td>Mnn-Dak Growers, Grand Forks, N.D.</td>
<td>13.4</td>
</tr>
<tr>
<td>Bidens hirta</td>
<td>Black-eyed susan</td>
<td>Peaceful Valley Farm Supply, Grass Valley, Calif.</td>
<td>43.1</td>
</tr>
<tr>
<td>Sorghastrum avenaceum</td>
<td>Indianangrass</td>
<td>Prairie Nursery, Inc., Westfield, Wisc.</td>
<td>73.1</td>
</tr>
<tr>
<td>* Panicum virgatum*</td>
<td>Switchgrass</td>
<td>Prairie Nursery, Inc., Westfield, Wisc.</td>
<td>73.1</td>
</tr>
<tr>
<td>Triticum aestivum x Secale cereale</td>
<td>Triticale</td>
<td>Grower’s Stock</td>
<td>106</td>
</tr>
</tbody>
</table>

Stolon production was assessed twice during the first growing season, July 2002 and Sept. 2002. Runners from each pot were cut, counted, and placed into labeled paper bags. After oven drying (45 °C) for 1 week, runners were weighed and biomass discarded.

To help protect plants from winter damage, pots were placed in a trench in late autumn, covered with straw for winter, then the straw was removed in early spring. Plants began to flower in mid-May with the first harvest on 16 June 2003. Berries were separated at harvest into marketable and unmarketable berries. Marketable berries were those 8 g or larger and relatively free of blemish. Unmarketable berries were those either damaged by disease or pest or less than 8 g. Berries were harvested until plants were completely finished producing fruit, with the last harvest occurring on 15 July. Yield was calculated as the sum of the marketable and unmarketable fruit from each individual potted plant. The number of stolons produced by each plant was counted before whole-plant harvest and dried.

Immediately after completing the fruit harvest, plants were qualitatively assessed as vigorous, weak (single shoot protruding from the stem with few leaves), or dead. At this time, the topmost portion of each plant was removed, leaving only an intact crown behind. The number of stolons produced in each pot was recorded. The foliage and stolons were dried at 45 °C for 2 weeks, and weighed.

Within 1 week of removing the foliar biomass, five plants were selected from each cover crop treatment. Root systems were rinsed of soil by placing the plant into clean water and gently massaging the soil into water. Root systems were viewed and ranked from one to five using the procedure of Wing et al. (1995) and then were dried at 45 °C for 1 week to determine root biomass.

Field experiment. In 1999, a study was initiated on a site at the Cornell Orchards, Ithaca, N.Y., in a field consisting of a Collamer silt loam, typic Hapludalf soil, pH 5.9, and 5.7% organic matter. The field had been planted to strawberry since 1992 and was shallowly plowed and disked before the start of the experiment. Four replicate blocks of eight treatments, consisting of five cover crop rotations and three different control treatments, were arranged in a randomized complete block design with 3 × 5-m plots.

**Three control treatments consisted of 1) a moved weedy fallow with annual fall tilling (white clover was the predominant weedy species), 2) weedy fallow followed by methyl bromide fumigation (99:1 methyl bromide: chloropirin; Brom-O-Gas; Great Lakes Chemical Corp.) in Spring 2001 before planting, and 3) a continuation of strawberry for 2 more years. Cover crop treatments were sown in Aug. 1999 and consisted of 4) perennial alfalfa (Medicago sativa), 5) three consecutive rotations of brown mustard, and 6) three rotations of consecutive species: hairy vetch (Vicia villosa) followed by maringold ('Nema-gone') and then rye; 7) kale (Brassica oleracea var Winterbor) followed by sweet corn (Zea mays var Saccharata) and then rye; and 8) oats ('Newdak') followed by sudangrass and rye. Rotational crops were incorporated by tillage in Spring 2000 and again in late Summer 2000. Each subsequent rotation was sown after tilling. The rotation with sweet corn and the continuous strawberry treatment received additional nitrogen fertilizer, but the other treatments did not.

Rooted runners of the cultivar 'Jewel' were planted on 17 May 2001 at a spacing of 50 cm in row and 1.25 m between rows. Transplants were planted in rows perpendicular to previous strawberry rows. Standard cultural practices were used (Pritts and Handley, 1997). Weeds were controlled by mechanical cultivation and by hand weeding during the period of flowering and harvest with applications of chemical herbicides made after field renovation. Late frosts in the Spring of 2002 require the use of the overhead irrigation system to prevent frost damage. The number of frost-killed blossoms, identified by blackened receptacles, was counted for 1-m row length per plot.

During the 2001 growing season, soil compaction and initial weediness were measured. Soil compaction was measured using a Dickie-John cone penetrometer on 11 June 2001. Measurements were made in five locations between plants in each plot at depths from 7.5 cm to 52.5 cm at 7.5-cm increments. To assess the effect of the preplant treatments on weed emergence, a representative 0.5-m² area was selected for each plot. On 10 July 2001, the initial flush of weeds was cut at soil level and separated by type. Weeds from each replicate were then identified as close to species as possible and then oven-dried for 1 week at 45 °C after which samples were weighed. Weeds were grouped into grasses or broadleaves for statistical analysis.
To assess the vegetative productivity of each treatment, stolon production and foliar biomass were measured. Near the end of the 2001 growing season, the number of stolons produced in a representative area of 0.5 m² was counted in each plot. Foliar biomass was harvested on 17 July 2002 from a representative area of 0.5 m² in each plot. Because of increasing variation within plots, foliation produced in 2003 was harvested from a representative square meter in each plot on 28 July. The date of flowering in each plot was noted, and the number of frost-injured flowers was counted. Immediately after harvesting the foliar biomass in both 2002 and 2003, the foliation was placed in a drying oven (45°C) for 1 week and then weighed.

The fruit harvest in 2002 was from 19 June to 11 July, and in 2003 from 19 June through 17 July. In 2002, the field was picked every 3 d; in 2003, the field was picked several times per week depending on the volume of ripe berries. Harvest ended once the average berry size dropped below marketable size. Berries were harvested from a representative 2 m of row in each plot. At the time of picking, berries were separated according to ripeness. Marketable berries were those larger than 8 g and with no obvious blemish. Unmarketable berries were those with obvious insect damage, apparent rot, small size, or some kind of physiological disorder such as sunscald or water cracking. Immediately after harvest, berries were placed in a 0°C cooler for up to 24 h until they were weighed and counted.

Strawberry roots and rhizosphere soil from each treatment were assessed for nematodes, fungi, and bacteria during the summer of 2002. Nematodes were determined by selecting one representative plant and at least 1 kg of adhering soil, which was removed from each plot on 22 May 2002. Plants and soil were individually bagged, cooled, packaged in an insulated cooler, and sent for analysis to the Diagnostic Service at Michigan State University (East Lansing, Mich.). Nematodes were extracted from the root and rhizosphere soil, and were identified and counted.

Pieces of strawberry roots to be analyzed for fungal infection were harvested during June 2002 using the sampling technique described by Yuen et al. (1991). Five positions were selected for each plot at locations within 2 cm of strawberry crowns. Roots were removed from bulk soil by using forceps, then placed in a zip-lock bag, and stored in a cooler (5°C) for up to 14 d until sterilizing and plating (Mazzola, 1998). At the time of separating bulk soil and roots, small composite aliquots consisting of =10 g from each plot were thoroughly mixed by shaking (Dick et al., 1996) and placed in a cooler (5°C) for 2 weeks until used in soil microbial analyses. A composite soil sample was weighed, then allowed to air-dry at 22°C at which time it was weighed again. Percent moisture was calculated for each plot following the following formula: (moist weight – dry weight)/dry weight) x 100 = % moisture (Josephson et al., 2000). Within 1 week after sampling, root segments were rinsed of soil on 1-mm mesh screens using tap water to remove surface soil, sterilized in 10% commercial bleach (Clorox, 6.75% sodium hypochlorite), and then triple rinsed with distilled water. Root segments were selected and prepared for plating according to the process of Pinkerton et al. (2002). The three agar types used were PDA-amended with Rose Bengal and streptomycin for culturing all fungi (PDA+; Dhingra and Sinclair, 1995), PARP for culturing Pythium spp. (Jeffers and Martin, 1986), and Ko and Hora (1971) for culturing Rhizoctonia spp.

After 10 to 15 roots were plated on each agar type, plates were then incubated and viewed as prescribed for each agar type (Dhingra and Sinclair, 1995; Jeffers and Martin, 1986; Ko and Hora, 1971) with the exception that incubation temperature was 20°C and that all plates were initially incubated in the dark for the first day. Root segments were identified having positive fungal infections if fungi protruded from the root segments and grew into the agar medium. The proportion of positive infections out of the number of roots segments plated on each of the three agar types was recorded.

Within 2 weeks of sampling, the roots and rhizosphere soil were prepared for microbial analysis. Each sample was prepared in duplicate series of 1.0 x 10⁻¹ to 1.0 x 10⁻⁶ using the method described by Josephson et al. (2000) adapted to use 0.1 M phosphate buffer pH 7.0 (NaH₂PO₄ • H₂O and Na₂HPO₄) as the substrate. The serial dilutions were plated on both PDA+ and R2A agars for fungi and bacteria, respectively. Plates were incubated in the dark at 20°C for 72 to 96 h for the PDA+ plates and 96 to 144 h for the R2A plates. The length of 144 h allowed for excessive growth, eliminating one replicate from the continuous strawberry treatment from statistical analysis. Plate counts of colony-forming units (CFUs) of both bacteria and fungi were made using a dissecting scope. CFUs were calculated to take soil weight and moisture into account using the following equation: (1/dilution factor) • CFU • (dry weight)/g = CFU • g dry soil⁻¹. A log₁₀ transformation of CFU • g dry soil⁻¹ was performed on the data before analysis (Josephson et al., 2000). During the week of 28 Oct. 2002, five plants and adhering soil per replicate were harvested to a depth of 20 cm and analyzed for the presence of pathogenic fungi and bacteria. Because of higher infection by Fusarium spp. and Cylindrocarpon spp. and lower infection by Rhizoctonia spp. in diagnostic samples (data not shown), agar selective for Fusarium and Cylindrocarpon was used. Plates were incubated as described for each type (Jeffers and Martin, 1986; Nash and Snyder, 1962). PDA+ plates were incubated in conditions similar to PARP.

All data were analyzed using SAS (Cary, N.C.). The GLM procedure was used to determine the F-statistic and to determine treatment means and variance. Means separation was performed by LSD to compare cover crop treatments with the various control treatments. Comparisons among the various cover crop treatments were less meaningful so a multiple range test was not used. Correlations were performed using the Pearson correlation procedure within the GLM procedure. Orthogonal contrasts were performed when appropriate.

Results

Pot study. Indicators of replant disorder were reduced by many of the cover crop treatments when compared with the bare fallow treatment (Table 2). In general, strawberry plants performed less well after buckwheat, sudangrass, and triticale incorporation, and visual symptoms of replant disorder were particularly evident in the bare fallow, cowpea, buckwheat, black-eyed susan, and triticale treatments. Freezing temperatures in the Winter of 2003 caused the death of many crowns and severely weakened some plants. Plants from the bare fallow treatment were significantly more damaged over the winter compared with other treatments (P < 0.035) and were significantly less likely to produce fruiting buds than healthy plants (P < 0.0001).

Methyl bromide fumigation did not result in superior performance of strawberry plants; rather, yield and root biomass were significantly lower than most other treatments (Table 2). Although plants from the bare fallow treatment also had low yield, root biomass was not as low as plants from the fumigation treatment. Compared with both of the control treatments (bare fumigation), fruit production was greater on average after cover crops (P < 0.0002).

Fruit production was greatest after indiangrass, switchgrass, brown mustard, and millet. With switchgrass and Japanese millet treatments, yields were high, whereas several of the vegetative variables (foliar biomass, stolon production, and root vigor) were low. With indiangrass and brown mustard treatments, both vegetative and fruit production variables were high. Overall, there was no association between vegetative vigor and fruit production, suggesting that cover crops may have specific effects on components of strawberry plant growth.

The soil from the field site had low levels of _P. penetrans_ and other plant parasitic nematodes before planting strawberries (Table 2). Sunnhemp and millet had _P. penetrans_ counts of 86 and 78 per 100 cm³ soil, respectively, but these higher infestation levels were still lower than the range commonly associated with symptoms of disease (Lamondia and Martin, 1989; Wing et al., 1994).

Neither the accumulated biomass of the preplant cover crops nor the production of stolons in 2002 was significantly correlated with fruit yield. However, root vigor was positively correlated with fruit yield (r = 0.45, P < 0.0001), foliar biomass (r = 0.474,
Table 2. Cover crop biomass at the end of 2001, lesion nematode levels in spring 2002, and the vegetative and fruiting response of strawberries in 2002 and 2003 grown in pots with soils from the cover crop plots.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cover Crop Dry Biomass1</th>
<th>Root Lesion Nematodes2</th>
<th>Stolon No. in 2002</th>
<th>Stolon Dry Biomass in 2002 (g)</th>
<th>Fruit No. per Plant in 2003</th>
<th>Fruit Fresh Biomass in 2003 (g/Plant)</th>
<th>Foliar Dry Biomass in 2003 (g)</th>
<th>Stolon No. per Plant in 2003</th>
<th>Root Vigor2</th>
<th>Root Dry Biomass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiangrass</td>
<td>12.6</td>
<td>12</td>
<td>7.75 a</td>
<td>13.17 a</td>
<td>43.90 a</td>
<td>275.0 a</td>
<td>24.05 a</td>
<td>0.900 ab</td>
<td>3.6 ab</td>
<td>35.00 ab</td>
</tr>
<tr>
<td>Switchgrass</td>
<td>79.2</td>
<td>2</td>
<td>5.25 ef</td>
<td>8.17 de</td>
<td>37.71 bc</td>
<td>247.9 ab</td>
<td>19.01 bc</td>
<td>0.039 e</td>
<td>3.0 bc</td>
<td>41.74 a</td>
</tr>
<tr>
<td>Mustard</td>
<td>210.7</td>
<td>2</td>
<td>7.75 a</td>
<td>13.15 a</td>
<td>37.68 bc</td>
<td>242.0 bc</td>
<td>21.28 ab</td>
<td>0.750 ab</td>
<td>3.6 ab</td>
<td>42.56 ab</td>
</tr>
<tr>
<td>Millet</td>
<td>195.8</td>
<td>78</td>
<td>6.30 cde</td>
<td>8.76 cde</td>
<td>40.06 ab</td>
<td>237.6 ab</td>
<td>19.36 bc</td>
<td>0.579 abde</td>
<td>3.3 ab</td>
<td>33.78 ab</td>
</tr>
<tr>
<td>Marigold</td>
<td>219.4</td>
<td>0</td>
<td>7.15 ab</td>
<td>10.83 bc</td>
<td>39.30 abc</td>
<td>227.9 bcd</td>
<td>18.27 cd</td>
<td>0.300 cde</td>
<td>3.4 ab</td>
<td>41.56 ab</td>
</tr>
<tr>
<td>Clover</td>
<td>274.7</td>
<td>2</td>
<td>7.80 a</td>
<td>12.83 ab</td>
<td>35.56 bcd</td>
<td>209.3 cd</td>
<td>22.34 cd</td>
<td>0.737 abcd</td>
<td>3.5 ab</td>
<td>44.44 ab</td>
</tr>
<tr>
<td>Cowpea</td>
<td>228.9</td>
<td>20</td>
<td>5.35 def</td>
<td>7.32 ef</td>
<td>34.18 cd</td>
<td>199.1 de</td>
<td>18.34 de</td>
<td>0.389 beded</td>
<td>3.2 bc</td>
<td>28.78 bc</td>
</tr>
<tr>
<td>Rubbeckia</td>
<td>127.6</td>
<td>0</td>
<td>6.50 ab</td>
<td>10.18 cd</td>
<td>35.00 bc</td>
<td>194.2 de</td>
<td>17.31 d</td>
<td>0.250 cde</td>
<td>2.8 cd</td>
<td>31.58 bcd</td>
</tr>
<tr>
<td>Sudangrass</td>
<td>432.5</td>
<td>6</td>
<td>5.50 def</td>
<td>5.40 f</td>
<td>22.81 ef</td>
<td>185.9 de</td>
<td>18.61 cd</td>
<td>0.211 de</td>
<td>3.1 bc</td>
<td>33.24 ab</td>
</tr>
<tr>
<td>Buckwheat</td>
<td>31.1</td>
<td>2</td>
<td>5.30 ef</td>
<td>9.21 cde</td>
<td>29.95 de</td>
<td>184.9 e</td>
<td>17.20 d</td>
<td>0.895 ab</td>
<td>2.7 de</td>
<td>35.84 ab</td>
</tr>
<tr>
<td>Triticale</td>
<td>194.2</td>
<td>2</td>
<td>5.70 cde</td>
<td>7.95 ef</td>
<td>31.26 de</td>
<td>182.4 e</td>
<td>17.85 cd</td>
<td>0.684 abde</td>
<td>2.4 e</td>
<td>24.08 d</td>
</tr>
<tr>
<td>Sunnhemp</td>
<td>196.8</td>
<td>86</td>
<td>5.00 ef</td>
<td>8.58 de</td>
<td>26.06 ef</td>
<td>172.7 e</td>
<td>22.88 a</td>
<td>1.056 a</td>
<td>3.9 a</td>
<td>38.64 abc</td>
</tr>
<tr>
<td>Fumigation</td>
<td>0</td>
<td>0</td>
<td>7.05 ab</td>
<td>7.79 e</td>
<td>24.06 f</td>
<td>159.4 f</td>
<td>19.06 bc</td>
<td>0.778 abc</td>
<td>3.8 ab</td>
<td>28.38 cd</td>
</tr>
<tr>
<td>Bare fallow</td>
<td>0</td>
<td>14</td>
<td>4.55 f</td>
<td>7.51 ef</td>
<td>30.84 de</td>
<td>189.2 e</td>
<td>18.53 cd</td>
<td>0.211 de</td>
<td>3.1 bc</td>
<td>39.34 ab</td>
</tr>
</tbody>
</table>

1Dried weight (g) from 0.5 m² of established cover crop in late Fall.
2Number of nematodes in 100 cm² soil.
3Rank scale 1 to 5 (dead to healthy).

P < 0.0001), root biomass (r = 0.50, P < 0.0001), and 2003 stolon production (r = 0.36, P < 0.0027).

Field experiment. Replant disorder was observed in the continuous strawberry plots before the end of the first growing season as stolon production (2001) in the continuous strawberry treatment was low. Plants continued to grow poorly in the subsequent two growing seasons. Foliar biomass in continuous strawberry plots was significantly lower than all other treatments in both seasons (P < 0.0001) (Table 3), and a similar trend existed for fruit yield in both 2002 and 2003 (Table 4). The number of frost-killed blossoms in 2002 was also highest in the continuous strawberry treatments thatflowered 3 days earlier than other plots. The incidence of frost injury was negatively associated (r = –0.42, P < 0.02) with the average individual (marketable) berry size in 2002. Individual berry size was larger in 2003 than in 2002, with frost injury being least (Table 6) and was negatively correlated with root vigor (r = –0.59, P < 0.05) and marketable yield in 2003 (r = –0.37, P < 0.04). Other potential pathogens were not consistently correlated with the occurrence of replant symptoms. Nematode levels were generally low (Table 5) and not considered to have been in continuous strawberry plots, KCR, and rotations containing legumes (Table 6) and was negatively correlated with root vigor (r = –0.59, P < 0.05) and marketable yield in 2003 (r = –0.37, P < 0.04). Other potential pathogens were not consistently correlated with the occurrence of replant symptoms. Nematode levels were generally low (Table 5) and not considered to have played a role in replant symptoms in this site. Similarly, the level of Fusarium-type infection was low (1.7%). Infection by Pythium spp. across treatments was relatively low in both summer and fall (19.7% and 5%, respectively). The level of Pythium infection at the summer sampling time was negatively correlated with bacterial CFUs (r = –0.45, P < 0.03). Although bacterial CFUs were highest in the fumigation treatment, their levels were relatively similar across treatments (Table 6).

Across all treatments, there was a significant correlation between total weeds and both the level of infection by Pythium (r = 0.41, P < 0.02) and fungal CFUs (r = 0.37, P < 0.04). The level of fungal CFUs in the multiple species rotations was generally lower than those of the single species rotations (P < 0.027).

Discussion

Without soil amelioration, replanted strawberries in both studies exhibited characteristic replant disorder. Continuously replanted strawberries exhibited poor growth, root health, and productivity and an increase in frost injury in the field study. This latter effect was likely the result of earlier flowering in weaker plants incited by greater heat absorption and radiation in soil with less foliar cover. The only measured variable that was favorable in continuous strawberries was the low level of soil compaction.

Methyl bromide fumigation typically results in high yield and improved plant productivity in replant sites (Hancock et al., 2001; Larson and Shaw, 2000; Rieger et al., 2001). In both studies, fumigation with methyl bromide resulted in good vegetative growth; however, fruit yield was not exceptional the year after planting. It is possible that the balance between vegetative and reproductive growth was more optimal in other treatments than in fumigated plots the first fruiting year. Increased foliar biomass after fumigation may have resulted from additional nutrients made available through decaying organic material and the inhibition of nitrifying bacteria (Hansen et al., 1990; Miller et al., 1997; Wilhelm 1965). In the second year of the field study, yields were...
highest in fumigated plots, nematodes were not found, and fungal CFUs were low.

Several cover crops also suppressed pathogens and improved yield relative to continuous strawberries. Growing prairie grasses (indiangrass and switchgrass) before planting strawberries was associated with good productivity and root biomass. Summers (1999) found that rotations of prairie species led to greater soil aggregate stability and a general improvement of soil quality compared with annual grass rotations. This might, in part, explain the poorer performance from the annual grasses, sudangrass, and triticale. The high carbon-to-nitrogen ratio in these annual species had the potential for creating nutrient imbalances in the subsequent strawberry planting. Berseem clover, a nitrogen-fixing species, appeared to promote vegetative growth in the subsequent strawberry planting, but yield was not proportional to plant biomass, similar to the effect of fumigation.

Sunnhemp was associated with higher levels of nematodes and low productivity, although we cannot state that nematodes were the cause of poor productivity because root vigor and biomass were high with this treatment.

Reynolds et al. (2000) and Jagdale et al. (2000) observed that populations of *P. penetrans* were reduced through rotations of marigold, leading to increases in tobacco yield and quality. Similarly, we found that the rotation of marigold with strawberry resulted in no detectable nematodes, high root vigor, and fungal CFUs were high. Strawberry plants after rotations of hairy vetch/marigold/rye and oat/sudangrass/rye performed well, after a sequence of three sowings of brown mustard. A reduction in microbial pathogens incited by the biofumigation effect of the glucosinolate products released from the tissues of mustard species has led to increased plant vigor in other crop species (Black et al., 2003; Mazzola et al., 2001). Despite this initial response, the ameliorating effect of *B. juncea* on replant disorder may not be longlasting as yields were relatively lower the second fruiting year (Black et al., 2003; Ramirez-Villapudda and Muneekke, 1988).

Across both years, the multiple species rotations performed well, particularly the KCR treatment. These rotations also exhibited relatively low fungal CFUs and low levels of weeds. Strawberry plants after alfalfa did not perform well by any measure, and fungal CFUs were high. Strawberry plants after rotations of hairy vetch/marigold/rye and oat/sudangrass/rye performed

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Frost-Killed Buds in 2002</th>
<th>Total Fresh Yield in 2002 (g m⁻²)</th>
<th>Marketable Fresh Yield in 2002 (g)</th>
<th>Individual Fresh Fruit Wt in 2002 (g)</th>
<th>Total Fresh Yield in 2003 (g m⁻²)</th>
<th>Marketable Fresh Yield in 2003 (g)</th>
<th>Individual Fresh Fruit Wt in 2003 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumigation</td>
<td>3.25 ab</td>
<td>7941.7 ab</td>
<td>4782.3 bc</td>
<td>10.99 abc</td>
<td>11038.4 a</td>
<td>6990.8 a</td>
<td>14.65 a</td>
</tr>
<tr>
<td>Kale/sweet corn/rye</td>
<td>5.00 ab</td>
<td>8405.8 b</td>
<td>5495.1 ab</td>
<td>11.07 ab</td>
<td>9903.0 ab</td>
<td>5338.0 ab</td>
<td>13.25 cd</td>
</tr>
<tr>
<td>Mowed fallow</td>
<td>1.75 b</td>
<td>8087.9 ab</td>
<td>5041.5 bc</td>
<td>10.34 b–f</td>
<td>8481.2 b</td>
<td>4748.9 b</td>
<td>13.37 bcd</td>
</tr>
<tr>
<td>Oat/sudangrass/rye</td>
<td>2.50 ab</td>
<td>8696.9 ab</td>
<td>5349.5 ab</td>
<td>10.39 bcd</td>
<td>8438.3 b</td>
<td>4839.3 b</td>
<td>14.51 ab</td>
</tr>
<tr>
<td>Vetch/marigold/rye</td>
<td>2.75 ab</td>
<td>8522.5 ab</td>
<td>5211.3 bc</td>
<td>10.76 b–e</td>
<td>8361.2 b</td>
<td>4619.1 b</td>
<td>13.39 bcd</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>3.25 ab</td>
<td>7427.6 a</td>
<td>4309.8 c</td>
<td>9.57 b–f</td>
<td>8051.5 b</td>
<td>4387.1 b</td>
<td>12.63 d</td>
</tr>
<tr>
<td>Mustard</td>
<td>2.25 ab</td>
<td>9100.4 a</td>
<td>6404.1 a</td>
<td>12.92 ab</td>
<td>7691.6 b</td>
<td>4503.2 b</td>
<td>14.25 abc</td>
</tr>
<tr>
<td>Strawberry</td>
<td>6.00 a</td>
<td>5048.2 c</td>
<td>2706.2 d</td>
<td>8.33 f</td>
<td>4612.7 c</td>
<td>2410.8 c</td>
<td>12.70 d</td>
</tr>
</tbody>
</table>

Note: Numbers in a column followed by the same letter are not statistically different at *P* < 0.05 using the LSD test.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Compaction at 15 cm²</th>
<th>Compaction at 22.5 cm²</th>
<th>Total Weeds</th>
<th>Grass Weeds</th>
<th>Broadleaf Weeds</th>
<th>Total Nematodes</th>
<th>Root Lesion</th>
<th>Pin</th>
<th>Lace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumigation</td>
<td>1.36 cd</td>
<td>1.90 a</td>
<td>5.9 c</td>
<td>4.5 b</td>
<td>1.57 c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kale/sweet corn/rye</td>
<td>1.48 ab</td>
<td>1.92 a</td>
<td>9.3 c</td>
<td>1.0 b</td>
<td>6.85 bc</td>
<td>3</td>
<td>0</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Mowed fallow</td>
<td>1.35 bc</td>
<td>1.79 a</td>
<td>35.5 a</td>
<td>27.58 a</td>
<td>7.36 bc</td>
<td>4</td>
<td>2</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Oat/sudangrass/rye</td>
<td>1.74 a</td>
<td>1.93 a</td>
<td>26.2 ab</td>
<td>4.15 b</td>
<td>21.94 a</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vetch/marigold/rye</td>
<td>1.47 ab</td>
<td>1.89 a</td>
<td>18.4 bc</td>
<td>2.33 b</td>
<td>14.92 ab</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>1.64 ab</td>
<td>1.41 b</td>
<td>16.6 bc</td>
<td>7.10 b</td>
<td>9.53 ab</td>
<td>1.5</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mustard</td>
<td>1.41 b</td>
<td>1.77 a</td>
<td>11.5 bc</td>
<td>2.18 b</td>
<td>6.80 bc</td>
<td>2.0</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Strawberry</td>
<td>0.88 c</td>
<td>0.83 c</td>
<td>18.6 bc</td>
<td>3.8 b</td>
<td>16.49 ab</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note: Compaction determined by a soil probe (MPa).
g dry weight/m².
Values are expressed as number/g root tissue.
**Numbers in a column followed by the same letter are not statistically different at *P* < 0.05 using the LSD test.

Table 6. Seasonal response of various soil microflora on strawberry roots after one year in the field after 2-y cover crop rotations.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>General Fungi</th>
<th>Pythium</th>
<th>Rhizoctonia</th>
<th>General Fungi</th>
<th>Pythium</th>
<th>Fusarium Type</th>
<th>Bacterial CFU</th>
<th>Fungal CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumigation</td>
<td>31 ab</td>
<td>20 b</td>
<td>4 b</td>
<td>30 ab</td>
<td>14 ab</td>
<td>6.7 bc</td>
<td>5.66 a</td>
<td>2.53 f</td>
</tr>
<tr>
<td>Kale/sweet corn/rye</td>
<td>29 ab</td>
<td>19 b</td>
<td>17 a</td>
<td>23 ab</td>
<td>17 ab</td>
<td>8.3 ab</td>
<td>5.49 ab</td>
<td>2.95 bcd</td>
</tr>
<tr>
<td>Mowed fallow</td>
<td>40 a</td>
<td>30 a</td>
<td>7 b</td>
<td>20 ab</td>
<td>3 b</td>
<td>8.3 ab</td>
<td>5.48 ab</td>
<td>3.07 b</td>
</tr>
<tr>
<td>Oat/sudangrass/rye</td>
<td>31 ab</td>
<td>30 a</td>
<td>2 b</td>
<td>13 b</td>
<td>0 b</td>
<td>3.3 c</td>
<td>5.39 b</td>
<td>2.99 abc</td>
</tr>
<tr>
<td>Vetch/marigold/rye</td>
<td>26 b</td>
<td>23 b</td>
<td>20 a</td>
<td>33 a</td>
<td>28 a</td>
<td>3.3 c</td>
<td>5.52 ab</td>
<td>2.80 cd</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>32 ab</td>
<td>22 b</td>
<td>16 a</td>
<td>22 ab</td>
<td>0 b</td>
<td>11.7 a</td>
<td>5.55 ab</td>
<td>3.41 a</td>
</tr>
<tr>
<td>Mustard</td>
<td>41 a</td>
<td>18 b</td>
<td>7 b</td>
<td>13 b</td>
<td>2 b</td>
<td>6.7 bc</td>
<td>5.52 ab</td>
<td>3.08 ab</td>
</tr>
<tr>
<td>Strawberry</td>
<td>25 b</td>
<td>20 b</td>
<td>20 a</td>
<td>19 ab</td>
<td>5 b</td>
<td>1.7 c</td>
<td>5.40 ab</td>
<td>2.92 bcd</td>
</tr>
</tbody>
</table>

Note: Percent of infected roots plated on general and fungal specific agar media (10–15 roots per media type).
Values are transformed by log 10.
**Numbers in a column followed by the same letter are not statistically different at *P* < 0.05 using the LSD test.
better than plants after continuous strawber-
ries, but not statistically different from the
mowed fallow control. The number of grassy
weeds, however, was much higher in the
mowed fallow treatment compared with
multiple species rotations.

Fungal infection rates, particularly Rhi-
zoctonia, were negatively associated with
vegetative biomass of the strawberry plants.
Pythium populations were positively associ-
ated with weed biomass and negatively associ-
ated with bacterial CFUs, but neither
Pythium nor bacteria appeared to be directly
involved with replant disease in this study.
Fusarium and nematodes also did not appear
to play a role in replant disease in our study.

We demonstrated that, without amelio-
ration, replanting strawberries can lead to
a significant decline in plant vigor, growth,
and yield. Rhizoctonia appeared to be asso-
ciated with poor root health and productiv-
ity, but overall levels of fungal and bacterial
populations were not good predictors of
replant disorder. Fumigation led to im-
proved vegetative growth in replanted sites
but did not always lead to increased fruit
production. Strawberry plants after a rota-
tion of kale/sweet corn/rye or a rotation of
three sequential brown mustard crops per-
formed similarly to fumigated plots in our

some studies through the first flowering year. Most
cover crop rotations left the site in a better
condition for planting than allowing the site
to remain fallow, if for no other reason than
cover-cropped sites tended to have fewer
weeds. It is possible to select preplant cover
crops based on site-specific biologic, physi-

cal, and chemical soil properties that will
substantially improve conditions before re-
planting strawberries.

Literature Cited

Fehrman, W. 1988. Replant disease and its im-

Fort, S.B. and D.V. Shaw. 2000. Genetic analysis of
strawberry root system traits in fumigated and

nonfumigated soils. Relationships among root system above-ground traits of strawberry seed-

Hancock, J.F., P.D. Callow, S. Sercer, and A.C. Shilder. 2001. Relative performance of straw-

crops on potential pathogens, microbial activ-
ity, nitrogen availability, and seedling quality in

Jagdale, G.B., B. Ball-Coelho, J. Potter, J. Brandle, and R.C. Roy. 2000. Rotation crop effects on

Jeffers, S.N. and S.B. Martin. 1986. Comparison of two media selective for Phytophthora and

Ko, W.H. and F.K. Hora. 1971. A selective medium for the quantitative determination of

LaMondia, J.A. 1999. Influence of rotation crops on the strawberry pathogens Pratylenchus pen-

LaMondia, J.A., W.H. Elmer, T.L. Mervosh, and R.S. Cowles. 2002. Integrated management of

LaMondia, J.A. and S.B. Martin. 1989. The Influence of
Pratylenchus penetrans and temper-
auture on black root rot of strawberry by

Larson, K.D. and D.V. Shaw. 2000. Soil fumiga-

Nemato-

races, but not statistically different from the New York apple orchards. New
York Fruit Qrtly. 9:11–15.

bromide in fumigated agricultural soils. Appl.

Molot, P.M. and H. Ferriere. 1989. Susceptibility of
strawberry cultivars to Rhizoctonia solani and R. fragariae as influenced by inoculation technique, seasonal variations and physiologi-

Nash, S.M. and W.C. Snyder. 1962. Quantitative estimations by plate counts of propagules of the bean root rot Fusarum in field

soil solarization for the management of so-

ilborne plant pathogens in strawberry and red raspberry production. Plant Dis. 86:645–651.

Pritts, M.P. and D. Handle. (eds.). 1997. Straw-
berry Production Guide Northeast Regional
Agricultural Engineering Service, Ithaca,
N.Y. 162 p.

Ramirez-Villapudua, J. and D.E. Munneke. 1988. Effect of solar heating and soil amend-
ments of cruciferous residues of Fusarium oxysporum Lsp. conglutinans and other organ-

966.

Solarization and chemical alternatives to methyl bromide for preplant soil treatment
of strawberries. Horttechnology 11:258–

264.

Commonwealth Bureau of Horticulture and

Plantation Crops, East Malling, Maidstone,
Kent. CAB. No, 1.

Summers, J.R. 1999. Cover crops reduce weeds and maintain soil quality for sustainable strawberry

Weller, D.M., J.M. Raaijmakers, B.B. McSpadden

Gardener, and L.S. Thomashow. 2002. Micro-

bial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev.

Wilhelm, S. 1965. Pythium ultimum and the soil

Biologic, edaphic and cultural factors associated
with black root rot in New York. HortScience
30:86–90.

Yuen, G.Y., M.M. Schroth, A.R. Weinhold, and
J.F. Hancock. 1991. Effects of soil fumigation with methyl bromide and chloropicrin on

1308

HortScience Vol. 41(5) August 2006