(182) Comparison of Aqueous and Gaseous Application of 1-Methylcyclopropene on Ripening of Tomato Fruit Harvested at Two Stages of Maturation

in HortScience
View More View Less
  • 1 Institute of Food and Agricultural Sciences, Horticultural Sciences Department, Gainesville, FL, 32611

This study was performed to characterize the physiological responses of tomato (Lycopersicon esculentum L.) fruit harvested at either 10% to 30% or 30% to 60% color change and treated with two forms of 1-methylcyclopropene (1-MCP). Tomato fruit were treated either by submersion for 1 min in 1-MCP aqueous solution at the ambient temperature or by exposure for 12 h at 20 °C in air with 1-MCP gas, then stored at 20 °C. The concentrations (1.0, 5.0, or 10.0 μL·L-1) in 1-MCP aqueous solution were achieved through addition of 0.5, 2.5, or 5.0 g of AFxRD-300 powder (2.0% formulation, Agro-Fresh, Inc.) to 10 L of the de-ionized water, following manufacturer's instructions. 1-MCP (0.5 μL·L-1) gas in a 174-L container was achieved through addition of 0.22 g of SmartFresh® powder (0.14% formulation, Agro-Fresh, Inc.) to 100 mL of tap water. Both forms of 1-MCP significantly delayed ripening of fruit at the two initial ripeness stages, as noted by a significant delay in fruit softening and peel color change. The firmness of 30% to 60% color change tomatoes was significantly retained in response to gaseous or aqueous 1-MCP. Control fruit softened rapidly and reached the minimum marketable firmness value (about 5 N) within 8 days of storage at 20 °C, whereas fruit treated with gaseous 1-MCP (0.5 μL·L-1) or aqueous 1-MCP (1.0 or 5.0 μL·L-1) reached the same stage after 16, 20, or 24 days, respectively. Firmness retention was also highly significant for 10% to 30% color change tomatoes treated with both forms of 1-MCP. The highest concentration of aqueous 1-MCP (10.0 μL·L-1) did not result in a further delay in ripening compared with treatment at 5.0 or 1.0 μL·L-1 1-MCP.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 5 0
PDF Downloads 64 28 3