Greenhouse Pepper Growth and Yield Response to Copper Application

in HortScience
View More View Less
  • 1 Controlled Environment Systems Research Facility, Department of Environmental Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Copper (electrolytically generated or from cupric sulfate) is increasingly used to control diseases and algae in the greenhouse industry. However, there is a shortage of information regarding appropriate management strategies for Cu2+ (Cu) in greenhouse hydroponic production. Three greenhouse studies were conducted to examine the growth and yield responses of sweet pepper (Capsicum annuum L., Triple 4, red) to the application of Cu in hydroponic production systems. In the first two experiments, plants were grown on rockwool and irrigated with nutrient solutions containing Cu at concentrations of 0.05, 0.55, 1.05, 1.55, and 2.05 mg·L–1. Copper treatments were started either when plants were 32 days old and continued for 4 weeks, or when plants were 11 weeks old and continued for 18 weeks, respectively. In the third experiment, roots of solution cultured pepper seedlings were exposed to Cu (1.0, 1.5, and 2.0 mg·L–1) containing nutrient solutions for 2 hours per day for 3 weeks. Higher Cu treatment initialized when plants were 32 days old significantly reduced plant leaf number, leaf area, leaf biomass, specific leaf area, stem length and shoot biomass. The calculated Cu toxicity threshold was 0.19 mg·L–1. However, when treatment initialized at plants were 11 weeks old, Cu did not have significant effects on leaf chlorophyll content, leaf area or specific leaf area. Copper started to show significant negative effects on leaf biomass and shoot biomass at 1.05 mg·L–1 or higher levels. Copper treatments did not have any significant effect on fruit number, fresh weight or dry weight. Under all the Cu levels, fresh fruit copper contents were lower than 0.95 mg·kg–1 which is below the drinking water standard of 1.3 mg·kg–1. Seedling growth was significantly reduced by exposing roots to Cu (≥1.0 mg·L–1) containing solutions even for only 2 h·d–1.

Contributor Notes

To whom all the correspondence should be addressed; e-mail yzheng@uoguelph.ca.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 7
PDF Downloads 55 55 9