Foliar Damage and Flower Production of Landscape Plants Sprinkle Irrigated with Reuse Water

in HortScience

Nineteen flowering landscape species were sprinkle irrigated with either reuse water or fresh water, with an additional treatment of reuse water plus shade (solar radiation reduced by 24%), for 113 days during late summer and early fall in southern Nevada. The species selected were common to mixed landscape areas on golf courses in southern Nevada transitioning to reuse water. An index of visual damage (IVD) was assessed, along with an assessment of flower production, canopy temperature, tissue ion analysis and spectral reflectance. The IVD values separated based on species (p < 0.001), treatment (p < 0.001) and by a species by treatment interaction (p < 0.001). Irrigating with reuse water plus shade reduced the IVD compared to the reuse without shade in 7 of the 19 species (p < 0.05). When IVD values were included for all species, 40% of the variation in the IVD values could be accounted for if N, B, Ca, Mg, Na, and Zn were included in the regression equation. Higher r2 values were obtained when individual species were isolated, with regression equations differing based on tissue ion combinations [e.g., ice plant (Mesembryanthemum crystallinum L.) r2 = 0.81 IVD↑, Na↓, Mn↑]. Three vegetation indices chlorophyll index (CHL), red/far red (R/FR) and water band index/normalized difference vegetation index (WBI/NDVI)) accounted for 51% of the variation in the IVD values. As much as 72% of the variation in vegetation indices could be accounted for based on tissue ion concentrations when separated based on treatment, with Na being the only common ion in all of the highest correlations. Flower production was highest in the reuse plus shade treatment in all 13 species flowering during the experimental period, with as much as 86% of the flower production variation driven by different tissue ion concentrations [purple cup (Nierembergia hippomanica), r2 = 0.86, flowers↑, Mn↑, Zn↓]. Nine of the nineteen species had acceptable levels of foliar damage (IVD < 2.0). We believe that if the spray irrigation can be minimized (bubblers/drip) and/or partial shade provided, through multi-story landscape designs, a more favorable response will be observed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Also with Office in the Department of Biological Sciences, University of Nevada, Las Vegas NV 89154-4004. Professor to whom correspondence should be addressed; e-mail dev50@clark.nscee.edu.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 28 6
PDF Downloads 60 35 7