Effect of Multiple Plants per Plug on Processing Tomato Yield in California

in HortScience
View More View Less
  • 1 University of California, Cooperative Extension, Tulare, CA, 93274

In recent years, an estimated 65% of processing tomato acreage has converted from direct seeding to transplanting the crop. Growers have been switching to transplants for a number of reasons, including land use efficiency, water conservation, and weed management. Field studies investigating plant spacing and multiple plants per transplant plug (cell) were initiated when observations by growers indicated that there were seemingly decreased fruit yields from transplanted crops. A transplant density experiment was established in 2004 in a commercial field of processing tomatoes grown on the west side of Fresno County in the San Joaquin Valley, the major tomato production area in California. The field trial investigated in-row spacing (37.5 cm and 75 cm), the number of plants per transplant plug (1, 2, or 3), on a medium vine size variety (Halley 3155) and a large vine size variety (AB2). Individual plots were large enough for mechanical harvest. Yield results indicate that these two varieties responded similarly to increasing plant density. In general, a spacing of 37.5 cm with 2 or 3 plants per plug yielded significantly more than 1 plant per plug, regardless of variety. There was no yield advantage in seeding 3 plants per plug when compared to yields with 2 plants per plug, regardless of variety or in-row plant spacing. A plant spacing of 75 cm with only 1 plant per plug yielded the least.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 11 0
PDF Downloads 55 20 1