Genetic Diversity Study of Green Bean [Phaseolus vulgaris (L.)] using Morphological, Allozyme, and RAPD Markers

in HortScience
View More View Less
  • 1 1Northeast Agricultural University, Vegetable Department, Xiangfang Dist., Harbin, Heilongjiang, 150030, China
  • 2 2The University of Wisconsin, Horticultural Department, Madison, WI, 53706

The purpose of this study was to analyze the genetic relationship by using morphological, biochemical, and molecular markers. Sixty accessions of green bean [Phaseolusvulgaris (L.)], including 43 from North China, 13 from the International Center for Tropic Agriculture, and four from Poland, were collected and divided into three groups: cultivated determinate (35), cultivated indeterminate (12), and semi-wild determinate (13). Dendrograms were constructed based on the genetic similarity and distance analysis of these 60 accessions by using biological characters, allozyme, and random amplified polymorphic DNA (RAPD) markers. The 60 accessions were classified into two groups based on the genetic relationship examined in their biological characters. The cultivated indeterminate formed one group, and cultivated determinate and semi-wild determinate belonged to another group. Ten allozymes with 25 polymorphic loci divided the 60 accessions into nine groups, i.e., five groups for cultivated determinate, two groups for cultivated indeterminate, and two groups for semi-wild determinate. Twenty-nine RAPD markers with 314 polymorphic loci divided the 60 accessions into 13 groups, i.e., nine groups for cultivated determinate, three groups for cultivated indeterminate, and one group for semi-wild determinate. The average genetic similarities and genetic distance of intra-group and inter-groups were 0.81 and 0.75, and 0.19 and 0.24, respectively. Ten bands were characterized as specifically associated with cultivated determinate, one band specific for cultivated indeterminate, and one band for semi-wild. These biochemical and molecular markers provided more information than morphological markers. Allozyme and RAPD markers can be used as an available tool to exploit green bean germplasm in the future.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 18 0
PDF Downloads 66 32 1