Small Heat Shock Proteins, Morphological and Physiological Characteristics Associated with Heat Tolerance in Salvia (Salvia splendens)

in HortScience
View More View Less
  • 1 Louisiana State University, Horticulture, Baton Rouge, LA, 70803

Small heat shock proteins (sHSP) are a specific group of highly conserved proteins produced in almost all living organisms under heat stress. These sHSP have been shown to help prevent damage at the biomolecular level in plants. One of the greatest impediments to production of marketable herbaceous plants and their longevity is high temperature stress. The objectives of this experiment were to study the plant responses in terms of sHSP synthesis, single leaf net photosynthesis, total water-soluble carbohydrates (WSC), and overall growth for two S. splendens cultivars differing in performance under heat stress. `Vista Red' (heat tolerant) and `Sizzler Red' (heat sensitive) were exposed to short duration (3 hours) high temperature stresses of 30, 35, and 40 °C in growth chambers. Increasing the temperature to about 10 to 15 °C above the optimal growth temperature (25 °C, control) induced the synthesis of sHSP 27 in S. splendens. Expression of these proteins was significantly greater in the heat-tolerant vs. the heat-sensitive cultivar. Soluble carbohydrate content was greater in `Vista Red', and in both the cultivars raffinose was the primary soluble carbohydrate in heat-stressed plants. Overall growth of plants was significantly different in the two cultivars studied in terms of plant height, stem thickness, number of days to flower, and marketable quality. The better performance of `Vista Red' under heat stress was attributed to its morphological characteristics, including short stature, thicker stems and leaves. sHSPs and WSC are also found to be associated with heat tolerance and heat adaptation in S. splendens.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 16 0
PDF Downloads 97 51 0