(225) Challenges and Opportunities with Vegetable BMPs in Southwest Florida

in HortScience
View More View Less
  • 1 1University of Florida/SWFREC, Horticulture, Immokalee, FL, 34142
  • | 2 2University of Florida, Horticulture, Gainesville, FL, 32611
  • | 3 3University of Florida/IFAS, Hendry Co. Coop. Ext. Office, Labelle, FL, 33975
  • | 4 4University of Florida/SWFREC, Entomology, Immokalee
  • | 5 5University of Florida/SWFREC, Agricultural and Biological Engineering, Immokalee
  • | 6 6University of Florida/SWFREC, Plant Pathology, Immokalee
  • | 7 7University of Florida/SWFREC, Food and Resource Economics, Immokalee
  • | 8 8University of Florida/IFAS, Soil and Water Sciences, Gainesville

About 10,000 ha of staked tomato are grown each year in the winter–spring season in southwest Florida. Tomatoes are produced with transplants, raised beds, polyethylene mulch, drip or seepage irrigation, and intensive fertilization. With the development of nutrient best management practices (BMPs) for vegetable crops and increased competition among water users, N recommendations must ensure economical yields, but still minimize the environmental impact of tomato production. The current University of Florida–IFAS (UF–IFAS) N fertilization rate of 224 kg·ha-1 (with supplemental fertilizer applications under specified conditions) may require adjustment based on soil type and irrigation system. Because growers should be involved in the development and implementation of BMPs, this project established partnerships with southwest Florida tomato growers. Studies evaluated the effects of N application rates on yield, plant growth, petiole N sap, pests, and diseases. Nine on-farm trials were conducted during the dry winter 2004–05 season. Treatments consisted of N fertilizer rates ranging from 224 to 448 kg·ha-1, with each trial including at least the UF–IFAS rate and the traditional rate. Although total yields were comparable among N rates, there were differences in size category. Nitrogen rates had little effect on tomato biomass 30 and 60 days after transplanting. Changes in petiole sap NO3-N and K concentrations were different between seepage and drip irrigation, but usually above the sufficiency threshold. It is important to consider the type of irrigation when managing tomato and determining optimum N fertilizer rates.