(453) Effect of Drought Stress on Growth and Secondary Compound Production in Greenhouse-grown Guayule

in HortScience

As a native of the Chihuahuan desert, guayule (Partheniumargentatum Gray) has a history of dealing with low water availability. Agronomic studies have shown that increasing irrigation increases overall rubber yields, but decreases rubber concentration per plant. As water availability is an important factor in agricultural production, this study was conducted to examine how drought affects plant growth and secondary compound distribution throughout the plant. One-year-old guayule plants were subjected to water stress from June through August, in 2003 and 2004. The well-watered treatment was irrigated daily, and the drought-stressed plants were irrigated when the soil water potential reached 6 (0.6) or 3 (0.3) bars (megapascals) in 2003 and 2004, respectively. Plant growth was monitored by measuring height, width, and stem diameter. Fresh weight of shoots and roots was recorded at harvest, and a subset of plants were defoliated and used to determine leaf weight and area. Resin and rubber were extracted from dried and ground plant samples. Growth, leaf weight, and leaf to stem ratio were decreased in the drought-stressed plants compared to the well-watered plants. Rubber concentration, but not resin concentration, was higher in the drought-stressed plants. There were no significant differences in resin and rubber concentration in the leaves and roots of the different treatments; however, they were both higher in the stems of the drought-stressed plants. In guayule, rubber is deposited mainly in the bark parenchyma of the stems. The drought-stressed plants had a greater contribution of stem biomass to overall biomass and a reduced stem diameter with higher bark to wood ratio, which could account for the higher rubber concentration in the drought-stressed plants.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 22 5
PDF Downloads 65 41 3