(296) Effects of Lighting Intensity on the Yield of Tomato and Pepper Crops Grown under Space Station (ISS) Environmental Conditions

in HortScience
View More View Less
  • 1 1Dynamac Corporation, Food and Crop Systems, Kennedy Space Center, FL, 32899
  • | 2 2NASA Biological Sciences, Kennedy Space Center, FL, 32899

Of the many environmental variables, light intensity (PPF) has primary effect on photosynthesis and significantly influences crop yield. With the eventual use of a crop production system on the International Space Station (ISS), Mars transit vehicle, or in a lunar/Martian habitat, there exists certain engineering constraints that will likely affect the lighting intensity available to plants. Tomato and pepper are candidate crops being considered by NASA that were selected based on their applicability to such mission scenarios. To study the effects of lighting intensity, tomato (Lycopersicon esculentum L. cv. Red Robin) and pepper (Capsicum annuum L. cv. Hanging Basket) plants were grown under cool-white fluorescent (CWF) lamps with light intensities of 8.6, 17.2, or 26 mol·m-2 ·d-1, with a constant air temperature of 25 °C, 65% relative humidity, and CO2 supplementation of 1200 μmol·mol-1 in order to duplicate conditions plants might be subjected to in an open environment of a space cabin. Following 105 days of growth, edible and total mass for both tomato and pepper increased with increasing light levels. Fruit development and time to ripening was also affected by light treatments. The effects of lighting when combined with other environmental factors typical of spaceflight systems will help define crop production for future missions that incorporate plant-based life support technologies.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 1
PDF Downloads 21 21 3