Photosynthetic Characteristics of Apple Spur Leaves after Summer Pruning to Improve Exposure to Light

in HortScience
View More View Less
  • 1 Department of Horticultural Sciences, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456

Summer pruning increases canopy light penetration and re-exposes spur leaves of the interior canopy of apple trees (Malus ×domestica Borkh.). However, we hypothesized that leaf photosynthetic ability is determined by the pre-pruning light environment, and the re-exposure intensity after summer pruning is incapable of restoring the photosynthesis efficiency of shaded leaves. To test this hypothesis, a commercial-type thinning-cuts pruning was applied to mature central leader `Empire'/M.26 apple trees. Changes in light availability, leaf net photosynthesis (Pn), photosystem II efficiency, and specific leaf weight (SLW) were recorded periodically before and after pruning. Leaf photosynthesis declined slightly through the growing season and was well correlated with pre-pruning light availability until late September. Although Pn decreased more substantially late in the season on exterior leaves than on interior leaves, Pn of leaves in the inner and middle canopies was lower than exterior leaves until late October. Maximum efficiency of photosystem II of dark-adapted leaves, measured by chlorophyll fluorescence (Fv/Fm), was not related to prior exposure or re-exposure. Specific leaf weight was well correlated with pre-pruning light availability and with leaf Pn in August but not in October. Results suggested that commercial summer pruning significantly increases light environments in the inner and middle canopies. However, light availability at interior and middle canopy sites was still much lower than exterior canopy and, consequently, leaf photosynthetic ability did not increase after summer pruning.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 75 5
PDF Downloads 288 93 3