A New Disease in Limonium hybrids. I. Molecular Identification

A. Gera,¹ L. Maslenin, and A. Rosner
Department of Virology, Agricultural Research Organization, The Volcani Center, Bet Dagan 52050, Israel

M. Zeidan
The Plant Protection and Inspection Services, Ministry of Agriculture, Bet Dagan 50250, Israel

S. Pivonia
Northern Arava Research and Development, Sapir, D.N. Arava 86825, Israel

P.G. Weintraub
Department of Entomology, ARO, Gilat Research Center, D.N. Negev 85280, Israel

¹Corresponding author; e-mail abedgera@volcani.agri.gov.il.

Abstract. Yellows diseases in ornamental crops have become more common in Israel, and phytoplasmas have been detected in several crops. Recently, symptoms typical of a phytoplasma infection were observed on a large number of Limonium hybrids grown in commercial fields in Israel. Examination of samples from diseased plants by electron microscopy revealed the presence of pleomorphic membrane-bound bodies in the phloem cells. Diseased plants were additionally analyzed by PCR using universal and nested primers and revealed upon sequencing products of 1143, 788 and 722 bp (Li-IL, Li-b2-IL, Li-v3-IL, respectively). Analysis of the PCR products, associated with infected Limonium, clustered within two major groups of phytoplasmas (16SrV and 16SrIX), elm yellows and almond witches broom. This is the first published record of these phytoplasmas in Israel.

Although many species of Limonium (Plumbaginaceae Juss.), herbaceous perennials, are native to the Mediterranean region, seedlings for commercial production are usually imported from Europe, North America or Asia. Two species and two hybrids are grown in commercial production in the Arava valley (located between the Dead Sea and Red Sea); these include Limonium alata (/Emile/), L. sinuatum (annual statice), L. latifolium × L. caspium (/Beltaard/), and L. latifolium×L. bellidifolium (/Misty/, /Supreme/ and /Sunglow/). In any one year there are a total of ≈70 ha; ≈15 ha are in /L. sinuatum/ production and the remainder in /L. alata/ and Limonium hybrids. These plants are grown primarily for export to Europe as cut flowers for floral arrangements. Flowers are grown for 1 to 10 years in tunnels (7 × 100 m) covered with plastic; both ends are open and ventilation holes are cut about every 2 m. For the first 15 years of commercial production in the Arava, the crops were not affected by yellows disease. In October 2000 diseased plants were first observed in the northern Arava.

Materials and Methods

Mechanical inoculation. Leaf samples of Limonium grown in commercial plastic tunnels were examined for virus particles using electron microscopy and mechanical inoculation. Symptomatic samples were homogenized in 1% K2HPO4, and the sap was inoculated to Capsicum annuum L., Chenopodium quinoa Wild., C. amaranticolor, Cucumis sativus, Cucurbita pepo, Datura stramonium, Gomphrena globosa, Lycopersicon esculentum, Nicotiana benthamiana, D. clevelandii Glay, N. glutinosa, N. tabacum ‘NN’, N. tabacum ‘Samsun’, N. tabacum ‘Samsun NN’, N. tabacum Xanthi nc, N. rustica, N. sylvestris, N. tabacum ‘White Burley’, Petunia hybrida and Physalis floridensis Rybd., preseeded with carborundum. These plants were maintained in the greenhouse for one month and observed for symptom development.

Electron microscopy. Crude plant extracts in 0.1 M phosphate buffer were negatively stained with 20 g·L−1 uranyl acetate and examined for virus in an electron microscope (model 100CX II; Joel Ltd., Tokyo, Japan). For ultrathin sections, pieces of petioles and/or leaf veins (1 to 2 mm2) excised from healthy and symptomatic leaves of Limonium hybrids, were fixed in 2.5% glutaraldehyde buffered with 75 mM potassium phosphate, pH 7.0, for 2 h. The samples were then rinsed in the same buffer and postfixed in 1% OsO4 for 3 h. After a buffer rinse, the samples were dehydrated in a graded acetone series, embedded in an Epon-Araldite resin mixture, and polymerized as described by Orion and Franck (1990). Sectioned material was stained with uranyl acetate followed by lead nitrate and examined by electron microscopy.

Polymerase chain reaction and sequence analysis. DNA was prepared from leaf midribs and petioles as described by Tanne et al. (2000). DNA fragments were amplified using the universal phytoplasma primers P1/P7 (Schneider et al., 1993). The product was further amplified by nested PCR with the 16Sf2/16Sr2 and U3-R5 primer pairs (Lee et al., 1995). The DNA template in all PCR assays was 20 ng in a 50 µl assay. Standard PCR conditions were as in Tanne et al. (2000). Amplified samples were electrophoresed in a 1.2% agarose gel, stained with 0.5 (g·mL−1 ethidium bromide, with 0.5 (g·mL−1 ethidium bromide, and photographed under UV illumination (Sambrook et al., 1989). DNA extracted from symptom-free Limonium and naturally infected periwinkle plants served as negative and positive controls, respectively.

Amplified products from several Limonium samples were cleaned using QIAquick purification kit (Qiagen, Hilden, Germany) and sequenced by the dideoxynucleotide chain termination method, using 16Sf2 and U3 primers at the Weizmann Institute of Science, Rehovot, Israel. Sequence analysis was performed with the DNAMAN package, version 4 (Lynnon Biosoft, Canada). Phytoplasma-related sequences were initially identified using the BLASTN search program of the GenBank (Altschul et al., 1990). The nucleotide sequence of the phytoplasma infecting Limonium was compared to the following: almond witches’ broom phytoplasma (AlmWB1-4, AF390136-9), american aster yellows phytoplasma (AAY, X68373), austral grapevine yellows phytoplasma (AUSGY, L76865), aster yellows phytoplasma (AY1, AF322645), aster yellows phytoplasma (AY3, AJ271323), Candidatus fraxinix phytoplasma (AshY1, AF092209), Candidatus fraxinix phytoplasma (AshY, X68339), Candidatus fraxinix phytoplasma (AshY1-NY, AF092209), Candidatus fraxinix phytoplasma (AshY3, AF105315); Candidatus fraxinix phytoplasma (AshY5, AF105316); clover yellow edge phytoplasma (CYE-C, AF175304), clover yellow edge phytoplasma (CYE-Ar, AF189288), Clove yellow edge phytoplasma (CYE-L, AF173558), elm yellows phytoplasma (EY-
Fig. 1. Symptoms of phytoplasma in naturally infected *Limonium*. (A) Healthy plant with blue flowers on left, diseased plant center right. (B) Asparagus fern. (C) Leaflets instead of flowers. (D) Narrow, yellow basal leaves developing above old broad healthy leaves.

Arl. AF268895); elm yellows phytoplasma (EY1-NY, AF189214); elm yellows phytoplasma (EY1-WVEY, AF122911); elm yellows phytoplasma (EY1-ULMUS, AF122910); elm yellows phytoplasma (ULW, X68376); mollicutes from *Saccharum officinarum* L. (SCWL, X76432), pigeon pea witches’ broom phytoplasma (PPWB, AF248957); periwinkle little leaf phytoplasma (PLL-Bd, AF228053); brinjal little leaf phytoplasma (BLL-Bd-brinjal, AF228052); *Candidatus mali* phytoplasma (AT1, AJ42542); *Candidatus pyri* phytoplasma (PearD, U54989); *Candidatus aurantifolia* phytoplasma (BDL, U54989); *Candidatus phoenicium* phytoplasma (CanPH-21, AF515637); coconut lethal yellowing phytoplasma (LY-C2, AF498309); phytoplasma sp. (ACLX, X68383), mycoplasma-like organism (PPER, X68374), mollicutes from *V. myrtillus* (VAC, X76430), mollicutes from *C. roseus* (STOL-Cros, X76427), mollicutes from *V. vinifera* (VK, X76428), phytoplasma sp. (LY5, AF500334); *Paulownia* witches’ broom phytoplasma (PauWB, AF279271), peanut witches’ broom phytoplasma (PnWB, AY139868), rice yellow dwarf phytoplasma (RYD, AY139873), stolbur phytoplasma (STOL-Lily, AY169309), stolbur phytoplasma (STOL, AF248959), *sweet potato witches’ broom phytoplasma* (SPWB, AY139866), *Stylosanthes* little leaf phytoplasma (SLI-AUS, AJ289192); tomato big bud phytoplasma (BB, AF222064), tsuwabuki witches’ broom phytoplasma (TWB, D12580), *Ziziphus jujube* witches’ broom phytoplasma (JWB-Ch, AF305240); *Ziziphus jujube* witches’ broom phytoplasma (JWB-Ko, AB052879); loofah witches-broom phytoplasma (LiWB1, AF353090); loofah witches-broom phytoplasma (LiWB2, AY139871); phytoplasma sp. (LY5-Oaxaca (LY5, AF500333); western X phytoplasma (WX, L04682).

Results

A typical naturally infected *Limonium* is illustrated in Fig. 1. Symptoms included small and/or deformed or discolored flowers; small, narrow basal leaves, often yellow in color; excessive leaf growth (witches broom or asparagus fern). Over the course of the season up to 60% of the plants were affected in some areas. None of the 20 herbaceous test plant species listed in the materials and methods exhibited any symptoms related to viral infection up to one month following mechanical inoculation.

Electron microscopy. Electron microscope (EM) observations of crude plant extracts revealed no virus or virus-like particles. EM of ultrathin sections of infected leaves of *Limonium* hybrids revealed the presence of pleiomorphic membrane-bound bodies (Fig. 2) in the phloem cells. The size ranged from 200 to 1000 nm in diameter. No other types of bodies were observed. Similar bodies were not observed in samples of healthy *Limonium* hybrid plants.

Polymerase chain reaction and sequence analysis. Amplification of phytoplasma related sequences using the universal primers P1/P7 followed by a nested PCR with internal primers indicated that all *Limonium* plants expressing symptoms were infected by phytoplasma, while symptom-less plants were phytoplasma-free (Fig. 3). The PCR fragments, 1143, 788 and 722 bp of several clones, designated Li-IL, Li-b2-IL, Li-v3-IL, respectively, were directly sequenced using r16SFS2 or r13 primers. Nucleotide sequencing of Li-IL amplified product has shown 99.4% identity with EY-Ar1, Li-b2-IL, product 83% identity with BLL-Bd-Briljal and Li-V3-IL 91.4% with PPWB phytoplasmas respectively. A comparison with 53 related sequences from the GenBank confirmed the classification of these phytoplasmas associated with *Limonium* disease to two major groups (16SrV and 16SrIX), elm yellows and almond witches’ broom, respectively. Although, Li-IL and Li-b2-IL were classified to the same group they exhibit only 82.8% identity of nucleic acid sequence.

Discussion

A review of the literature revealed that phytoplasma infections are known from only a few species within the Plumbaginaceae: *L. sinuatum* in Korea (Hahn et al., 1998), Japan (Shiomni et al., 1999), Poland (Kaminska et al., 1999), and Lithuania (Valiunas et al., 2001), and *Goniolimon tataricum* (syns. *Limonium tataricum*) in Canada (Chang et al., 1996). Although *L. sinuatum* is grown in the same area of the Arava, and even immediately adjacent to *L. latifolium*, we have yet to find staticce with symptoms of phytoplasma infection. *Limonum altaica* also remains symptomless.

The symptoms in *L. latifolium* hybrids are typical of those of a phytoplasma infection, and sequence analysis of amplification products of 1143, 788 and 722 bp (Li-IL, Li-b2-IL, Li-v3-IL, respectively) is consistent with elm yellows and almond witches’ broom phytoplasmas classified to two major groups of 16SrV and 16SrIX according to Lee et al. (1998) . These results emphasize that the use of molecular tools, especially sequencing amplified nucleic acid fragments of the 16SrRNA gene, provides tools to differentiate phytoplasmas that exist in mixed infection. These results show that
Fig 4. Relationship dendrogram of *Limonium* infecting phytoplasma 16 s rRNA fragment with related sequences of phytoplasmas. The nucleic acid sequence was compared first by a BLASTN search of GenBank. Tree descriptions were generated using the neighbor-joining algorithm and based on calculations from pairwise nucleotide sequence distances derived from the multiple alignment format (not shown). Horizontal scale indicates sequence divergence, and vertical scale is arbitrary.
mixed phytoplasma infections associated with *Limonium* disease is not uncommon.

This is the first time an elm yellows disease and almond witches’ broom have been recorded in Israel. Elm yellows phytoplasma has not been reported in Israel, but it has been present for years in North America (Baker, 1948), Europe (Maurer et al., 1993) and China (Griffiths et al., 1999). The disease was detected in a diverse group of woody or herbaceous plants: *Eucalyptus* (Marcone et al., 1996), *Apocynum* (Sunn hemp), *Prunus* (stone fruit), *Rubus* (raspberry, blackberry), *Ulmas* (elm), *Vitis* (grape), *Ziziphus* (jujube) (Griffiths et al., 1999), and, more recently, *Parthenocissus quinquefolia* (Virginia creeper) (Harrison et al., 1996). However, almond witches’ broom was recently detected in Lebanon (Abou-Jawdah, 2001). However, almond witches’ broom was recently detected in Lebanon (Abou-Jawdah et al., 1999), and, more recently, *Parthenocissus quinquefolia* (Virginia creeper) (Harrison et al., 2002). In 2000 growers in South America also observed a phytoplasma-type disease in ‘Supreme’ (*L. latifolium* × *L. bellidifolium*) plants grown in greenhouses. These seedlings, like those in Israel, were imported from California; most probably, this was the source of the phytoplasma. Phytoplasmas are vectored to plants by leafhoppers and plant hoppers; in these seedlings, like those in Israel, were imported from California; most probably, this was the source of the phytoplasma.