Growth and Development of the Native Ruellia caroliniensis and Invasive Ruellia tweediana

in HortScience

Invasive species have disrupted thousands of acres of natural areas in Florida and appear to have a physiological competitive advantage over native species. The influence of light and temperature on germination was determined for the invasive Mexican petunia (Ruellia tweediana Griseb.) and native wild petunia (Ruellia caroliniensis Steud.). Seeds were collected and germinated in incubators with light or darkness at 15, 24, 33, and 30/20 °C. Light increased germination for each species, except at 15 °C (R. caroliniensis). For R. caroliniensis, highest germination (86% to 94%) occurred at 33 °C and 30/20 °C. Highest germination of R. tweediana (98% to 100%) occurred at 30/20 °C. Studies also were initiated to determine if R. tweediana has a competitive advantage over the native species when grown under wet and dry substrate conditions. Growth and development measurements after 8 weeks under controlled conditions revealed that R. tweediana grown in wet conditions had the greatest dry weight increase as compared to other treatments. Ruellia caroliniensis had higher specific leaf area when grown in wet or dry conditions, as compared to R. tweediana. Throughout the experiment, net CO2 assimilation of R. caroliniensis grown under dry or wet conditions was consistently lower than that of R. tweediana. Shoot nitrogen and phosphorus use efficiencies were generally greatest for R. tweediana plants grown in wet conditions. For shoot nutrient content, significant species × moisture interactions occurred for measured phosphorus (P) and calcium (Ca). When grown in wet conditions, R. tweediana had less shoot P and Ca as compared to dry conditions. For root nutrient content, species × moisture interactions were insignificant for each measured nutrient, with the exception of potassium (K). Potassium use efficiency of R. tweediana roots grown in wet conditions was higher than that of R. tweediana grown in dry conditions and R. caroliniensis grown in wet conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

Corresponding author; e-mail sbwilson@mail.ifas.ufl.edu.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 77 1
PDF Downloads 73 44 2