Mist, Vapor Pressure Deficit, and Cutting Water Potential Influence Rooting of Stem Cuttings of Loblolly Pine

in HortScience
View More View Less
  • 1 NC State Univ., Horticultural Science, Raleigh, NC 27695-7609
  • | 2 NC State Univ., Forestry, Raleigh, NC 27695-8002
  • | 3 NC State Univ., Horticultural Science, Raleigh, NC 27695-7609

Producing high quality rooted stem cuttings on a large scale requires precise management of the rooting environment. This study was conducted to investigate the effect of the rooting environment on adventitious root formation of stem cuttings of loblolly pine (Pinus taeda L.). Hardwood stem cuttings of loblolly pine were collected in Feb. 2002 from hedged stock plants and stored at 4 °C until setting in Apr. 2002. One hundred stem cuttings per plot in each of two replications received 45, 61, 73, 102, 147, or 310 mL·m-2 of mist delivered intermittently by a traveling gantry (boom) system. Mist frequency was similar for all treatments and was related inversely to relative humidity (RH) within the polyethylene covered greenhouse. Rooting tubs in each plot were filled with a substrate of fine silica sand, and substrate water potential was held constant using soil tensiometers that activated a subirrigation system. Cutting water potential was measured destructively on two cuttings per plot beginning at 0500 hr every 3 hh until 2300 hr (seven measurements) 7, 14, 21, or 28 days after setting. During rooting, leaf temperature and RH were recorded in each plot to calculate vapor pressure deficit (VPD). Cutting water potential and VPD were strongly related to mist application. Cutting water potential was also related to VPD. Rooting percentage had a linear and quadratic relationship with mean cutting water potential and VPD averaged between 1000 and 1800 HR. Eighty percent rooting occurred within a range of values for VPD. Data suggest that VPD can be used to manage the water deficit of stem cuttings of loblolly pine to increase rooting percentage. These results may be applicable to other species and to other rooting environments.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 26 2
PDF Downloads 97 51 6