Soil Organic Matter Content Effects on Apple Root Dynamics

in HortScience
View More View Less
  • 1 Michigan State Univ., Horticulture, East Lansing, MI 48824
  • | 2 Michigan State Univ., Horticulture, East Lansing, MI 48824
  • | 3 Michigan State Univ., Horticulture, East Lansing, MI 48824

Soil organic matter is a critical component which is fundamental in plant growth. Several soil factors are influenced by organic matter such as slow release of nutrients, increased water holding capacity, improved soil physical characteristics and improved environment for soil microorganisms. The aim of this work is to investigate the physical effect of organic matter content in the soil on apple root growth and development. Twenty five two-year old apple trees (Malus domestica, Borkh) cv. `Buckeye Gala' on M.9 NAKB 337 rootstock were planted in completely transparent acrylic boxes. Plants have been grown in a green house to avoid external rain in a complete randomized design. Trees were planted in a sandy-mix soil amended with soil high in organic matter, “muck”, at four incremental levels. Treatments compared were a control (sandy soil with 0% organic matter) and 1%, 2%, 4% and 8% soil organic matter. The amount of water applied by automatic drip irrigation was comparable for all the treatments to avoid high fluctuation of soil moisture on root dynamics. All treatments have been fertilized with the same amount of mineral fertilizer to avoid the nutrition effect on root dynamics. Digital photos of roots were taken to study their dynamics every one to two weeks during a period of five months. Roots have been highlighted with Photoshop and then analyzed with WinRhizo to measure root length, area, lifespan and dynamics. At the end of the growing period plants have been harvested and fresh and dry weight was evaluated to asses the root/shoot ratio. The effects of the treatments on root length, area, lifespan and dynamics, and root/shoot ratio will be discussed.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 26 2
PDF Downloads 94 43 0