Hydrophilic Gel Amendments to Sand Soil Can Increase Growth and Nitrogen Uptake Efficiency of Citrus Seedlings

in HortScience
View More View Less
  • 1 Citrus Research and Education Center, University of Florida, IFAS, 700 Experiment Station Road, Lake Alfred, FL 33850

We tested the hypothesis that amendments of two hydrophilic gels to a sand soil would reduce N leaching losses and increase growth of citrus seedlings. Three-month-old seedlings of `Swingle' citrumelo [Citrus paradisi Macf. × Poncirus trifoliata (L.) Raf.] were transplanted into containers of steam-sterilized Candler sand, amended with a linear acrylamide/acrylate copolymer (PAM), and/or a cross-linked copolymer agronomic gel (AGRO). Two rates of each amendment were applied either alone or together and were either mixed into dry sand prior to seedling transplant, used as a root-dip slurry at transplant or applied to the soil surface in a solution after transplant. Seedlings were grown in the greenhouse for 5 months and irrigated to container capacity with a dilute nutrient solution without leaching. Pots were leached every 2 weeks and total N losses from the soil were measured in the leachate. PAM amendments increased N retention in soil slightly but PAM had no effect on plant growth, water use, N uptake, or N leaching relative to unamended control plants. The AGRO amendments increased seedling growth, plant water use and uptake of N from 11% to 45% above that of the unamended control plants depending on application method. AGRO decreased N concentrations in the leachate to as low as 1 to 6 mg·L-1. Only 6% of the total applied N was leached from the AGRO treatments, which was about half that from the untreated control plants. There was no additional benefit of using both amendments together or of an additional AGRO root dip treatment. The largest plants used the most water, required the most N and had the greatest N uptake efficiency. AGRO amendments clearly enhanced seedling growth, increased their N uptake efficiency, and reduced N losses from this sand soil.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 111 36 0
PDF Downloads 102 41 1