Photoperiod, Juvenility, and High Intensity Lighting Affect Flowering and Cut Stem Qualities of Campanula and Lupinus

in HortScience
View More View Less
  • 1 Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078-6027

Campanula medium L. `Champion Blue' and `Champion Pink' and Lupinus hartwegii Lindl. `Bright Gems' were grown in 8- or 16-h initial photoperiods, transplanted when 2-3, 5-6, or 8-9 true leaves developed, and placed under 8-, 12-, or 16-h final photoperiods. The lowest flowering percentage for `Champion Blue' (<1%) and `Champion Pink' (16%) resulted from plants grown in the 8-h photoperiod continuously. One hundred percent flowering occurred when Campanula were grown in the 16-h final photoperiod, indicating that `Champion Blue' and `Champion Pink' are long-day plants. Plants grown initially in the 8-h and finished in the 16-h photoperiod had the longest stems. Stem diameter was generally thickest for plants grown in the 8-h compared with the 16-h initial photoperiod. However, the 8-h initial photoperiod delayed anthesis compared with the 16-h initial photoperiod. `Champion Blue' and `Champion Pink' plants transplanted at the 2-3 leaf stage from the 16 hour initial to the 8-h final photoperiod had flowering percentages of 64% and 63%, respectively; however, when transplanted at the 8-9 leaf stage, plants were fully mature and 100% flowering occurred indicating that all plants were capable of flowering. In year 2, plants receiving high intensity discharge (HID) supplemental lighting during the 16-h initial photoperiod reached anthesis in 11 fewer days compared with plants not receiving HID supplemental lighting. High profits were obtained from Campanula grown in the 8-h initial photoperiod and transferred at 5-6 true leaves into the 16-h final photoperiod. Lupinus hartwegii plants had a high flowering percentage (96% to 100%) regardless of photoperiod or transplant stage. The 16-h final photoperiod decreased days to anthesis compared with the 8- or 12-h final photoperiod indicating that L. hartwegii is a facultative long-day plant. Increasing length of final photoperiod from 8- to 16-h increased stem length. Juvenility was not evident for Lupinus in this study. In year 2, Lupinus cut stems were generally longer and thicker when given HID supplemental lighting, especially when grown in the 8- or 12-h final photoperiod. Supplemental lighting also reduced days to anthesis. Highest profits were generally produced from Lupinus plants grown with supplemental HID lighting (during the initial photoperiod) until 8-9 true leaves had developed.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 56 3
PDF Downloads 241 74 6