Nutrient Requirements for Lettuce Transplants Using a Floatation Irrigation System. I. Phosphorus

in HortScience
View More View Less
  • 1 University of Florida, Institute of Food and Agricultural Sciences, Horticultural Sciences Department, 1251 Fifield Hall, PO Box 110690, Gainesville, FL 32611

Several levels of P were supplied via floatation irrigation to `South Bay' lettuce (Lactuca sativa L.) transplants to determine the optimum P concentration necessary. Plants were propagated by floating flats (ebb and flow system) in a nutrient solution containing P at either 0, 15, 30, 45, or 60 mg·L-1 in summer and fall experiments, and either 0, 15, 30, 60, or 90 mg·L-1 P in a factorial combination with 60 or 100 mg·L-1 N in a winter experiment. Adding more than 15 mg·L-1 P had minimal effect on growth. Transplants produced with 0 P grew poorly, regardless of the level of N applied. Nitrogen at 100 mg·L-1 improved the response of shoot growth to any level of P, but adversely affected root growth compared with N applied at 60 mg·L-1. In general, relative growth rate was improved, while net assimilation rate was reduced at all levels of P. High-quality transplants had a root to shoot ratio of about 0.25, total root lengths between 276 and 306 cm, and total root area between 26 and 30 cm3 in a 10.9-cm3 cell volume. Only 30% of the plants produced without P could be pulled from the transplant flats, whereas 90% could be pulled when P was added. Pretransplant P hastened maturity and increased lettuce head weight at harvest in the field. This work suggested that at least 15 mg·L-1 P, supplied via floatation irrigation to a peat + vermiculite mix, was required to produce a transplant with sufficient roots for ease of pulling, rapid field establishment, and earlier harvest.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 156 8
PDF Downloads 971 438 36