Yield, Quality, and Water Use Efficiency of Muskmelon Are Affected by Irrigation and Transplanting Versus Direct Seeding

in HortScience
View More View Less
  • 1 Department of Horticultural Sciences, Texas Agricultural Experiment Station, Texas A&M University, Uvalde, TX 78801-6205
  • 2 The Institute of Soil and Water, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250 Israel

Restrictions on pumping water from underground aquifers are limiting vegetable production in Southwest Texas. To determine yield, quality, and water use efficiency (WUE) of muskmelon (Cucumis melo L. group Cantalupensis, `Caravelle'), six irrigation systems with varying input levels and their interactions with stand establishment (containerized transplants vs. direct seeding) were examined. Irrigation systems were: 1) pre-irrigated followed by dryland conditions; 2) furrow/no mulch; 3) furrow/mulch (40-μm-thick black polyethylene); 4) surface drip (0 cm depth)/mulch; 5) subsurface drip (10-cm depth)/mulch; and 6) subsurface drip (30-cm depth)/mulch. Field experiments were conducted on a silty clay loam soil during four seasons (1995-98). In 1995, marketable fruit yields were greater for subsurface drip systems at 30-cm depth than for furrow systems, with or without plastic mulch. Transplants grown with surface drip irrigation produced 75% greater yield in the 9-count fruit class size during early harvest than did those grown with subsurface drip (10- or 30-cm depth), but total yield was unaffected by drip tape depth placement. In 1996, the driest season of these studies, direct-seeded plants had higher total yields than did transplants; yield was greatest for direct-seeded plants on subsurface drip placed at 10- or 30-cm soil depth, and for transplants on subsurface drip at 10-cm depth. Soluble solids content was minimally affected by irrigation method, but was higher in fruit from transplants than in those from direct-seeded plants in 3 years. Across all seasons, the average water applied for drip systems was 53% lower than that for conventional furrow systems, and WUE was 2.3-fold as great.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 48 4
PDF Downloads 351 168 27