Carbon Dioxide Effects on Metabolism of Two Apple Fruit Cultivars

in HortScience
View More View Less
  • 1 Dept. of Fruit and Vegetable Science, Cornell Univ., Ithaca, NY 14853

Susceptibility of apple fruit to CO2 can be affected by cultivar and postharvest treatment with diphenylamine (DPA). To study possible metabolic reasons for CO2 injury development, `Cortland' and `Law Rome' apple fruit were either untreated or treated with DPA at harvest, and then exposed to air or 45 kPa CO2 for up to 12 days. Fruit were sampled at 3-day intervals during treatment, and peel and flesh samples were taken for organic acid and fermentation product analysis. Additional fruit were removed to air and stored for 25 weeks for evaluation of injury. `Cortland' apple fruit had more external CO2 injury, but less internal CO2 injury than `Law Rome'. DPA treatment markedly reduced incidence of both external and internal injury. Fermentation products increased in peel and flesh of both cultivars with increasing exposure to CO2. However, acetaldehyde concentrations were ≈10 times higher in peel and flesh of `Law Rome' than `Cortland' apples. Ethanol concentrations in the flesh were similar in both cultivars, but were about twice as high in `Cortland' than `Law Rome' peel. Neither acetaldehyde nor ethanol concentrations were affected consistently by DPA treatment. Cultivar or DPA treatment did not affect accumulation of succinate, often regarded as the compound responsible for CO2 injury. These results do not indicate that acetaldehyde, ethanol, or succinate accumulation is responsible for CO2 injury in apple fruit.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 11 1
PDF Downloads 44 12 1