Leaf Nitrogen Status on Yield and Quality of Roses

in HortScience
View More View Less
  • 1 Texas A&M University Research and Extension Center, 17360 Coit Road, Dallas, TX 75252

The establishment of critical tissue N levels for greenhouse rose production has been primarily based on visual symptoms of N deficiency, with relatively less consideration to yield parameters. This work examined the relationship between rose leaf N concentration and flower yield and quality. Container-grown `Royalty' rose plants were irrigated for 13 months with complete nutrient solutions containing N concentrations of 30, 60, 90, 120, 150 and 220 mg·L–1. Optimum flower and dry biomass yields, stem length, and stem weights were obtained in plants irrigated with 90 mg·L–1 N. Leaf N concentrations increased asymptotically with N applications, stabilizing at N concentrations >90 mg·L–1. Time of the year had an effect on overall leaf N concentrations, with higher values observed in the winter, and lower values in the summer. Leaf N concentrations were linearly, and significantly, correlated with leaf chlorophyll content and leaf color attributes (hue, chroma, and value). Quadratic relationships between leaf N concentration and rose plant yields were observed only for the second half of the experimental period, and depicted an apparent, and striking, plant control over tissue N status. In addition, these relationships indicated that optimum plant yields were possible during spring and summer with leaf N concentrations below the recommended critical level of 3% (as low as 2.4% to 2.5%). These results suggest that leaf N concentration per se is not a dependable indicator of rose productivity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 41 11 2
PDF Downloads 58 21 1