647 Effects of Nitrogen Application Rates on Leachate Nitrogen Concentrations and Leatherleaf Fern Establishment

in HortScience
Author:
Robert H. StampsMREC, IFAS, University of Florida, 2725 Binion Road, Apopka, FL 32703-8504

Search for other papers by Robert H. Stamps in
ASHS
Google Scholar
PubMed
Close

One of the most difficult times to balance crop nitrogen (N) requirements with concerns about nitrate-N leaching occurs during crop establishment, when root systems are poorly developed and not widely distributed in the growing medium. This dilemma can be exacerbated when producing a slow-growing plant such as leatherleaf fern (Rumohra adiantiformis [Forst.] Ching) on sandy soils in shadehouses in areas with significant rainfall. Rhizomes were planted in 36 drainage lysimeters containing Tavares fine sand located in a shadehouse. Nitrogen fertilizer was applied at nine rates using liquid and/or controlled-release fertilizer. Nitrogen application rates were varied as the rhizomes became established and spread into unplanted areas of the lysimeters. Irrigation and rainfall were monitored and the amount of water not lost to evapotranspiration was determined. Nitrogen (ammoniacal, nitrate/nitrite, total Kjeldahl) concentrations in leachate collected below the rootzone were determined. Stipe sap nitrate and frond total Kjeldahl nitrogen (TKN) were determined to try to develop a production monitoring technique. Initially, only leachate samples from controlled-release fertilizer plots treated at 21 and 42 kg of N/ha per year and liquid fertilizer at 28 kg of N/ha per year were consistently below the maximum contamination level (MCL) of 10 mg·L–1. As the fern became established, leachate nitrate/nitrite-N concentrations from higher N application rate treatments also remained below the MCL. Leachate N concentrations decreased as rainfall increased. Fern growth increased with increasing N application rate. Stipe sap nitrate-N and frond TKN concentrations were not well-correlated during establishment.

  • Collapse
  • Expand