507 Nitrogen Uptake Dynamics of Citrus Seedlings

in HortScience
View More View Less
  • 1 Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850

Improving our understanding of processes that control and limit nitrogen uptake by citrus can provide a scientific basis for enhancing nitrogen fertilizer use efficiency. Nitrogen uptake dynamics of two rootstock seedlings will be compared to those of young budded trees. Three-month old Swingle citrumelo [Citrus paradisi Macf. × Poncirus trifoliata (L.) Raf.] and Volkamer lemon (C. volkameriana Ten. & Pasq.) trees were planted in PVC columns filled with a Candler fine sand. Field experiments were conducted using 4-year-old `Hamlin' orange trees [Citrus sinensis (L.) Osb.] grafted on `Carrizo' [C. sinensis × Poncirus trifoliata (L.) Raf.] or on Swingle citrumelo. Trees were either grown in solution culture using 120-L PVC containers or in 900-L PVC tubs filled with a Candler fine sand. Additional trees were planted in the field during Spring 1998. Two lateral roots per tree were trained to grow in slanted, partly burried, 20-L PVC columns filled with a Candler fine sand. Nitrogen uptake from the soil was determined by comparing the residual N extracted by intensive leaching from planted units with that of non-planted (reference) units. With the application of dilute N solutions (7 mg N/L), plants reduced N concentrations to near-zero N concentrations within days. Applying N at higher concentrations (70 or 210 mg N/L) resulted in higher initial uptake rates, increased residual soil N levels, and reduced nitrogen uptake efficiency. Contributions of passive uptake to total nitrogen uptake ranged from less than 5% at soil solution concentrations around 3 ppm N to 20% to 30% at concentrations of 60 ppm N.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 8 0
PDF Downloads 37 14 0