Improving our understanding of processes that control and limit nitrogen uptake by citrus can provide a scientific basis for enhancing nitrogen fertilizer use efficiency. Nitrogen uptake dynamics of two rootstock seedlings will be compared to those of young budded trees. Three-month old Swingle citrumelo [Citrus paradisi Macf. × Poncirus trifoliata (L.) Raf.] and Volkamer lemon (C. volkameriana Ten. & Pasq.) trees were planted in PVC columns filled with a Candler fine sand. Field experiments were conducted using 4-year-old `Hamlin' orange trees [Citrus sinensis (L.) Osb.] grafted on `Carrizo' [C. sinensis × Poncirus trifoliata (L.) Raf.] or on Swingle citrumelo. Trees were either grown in solution culture using 120-L PVC containers or in 900-L PVC tubs filled with a Candler fine sand. Additional trees were planted in the field during Spring 1998. Two lateral roots per tree were trained to grow in slanted, partly burried, 20-L PVC columns filled with a Candler fine sand. Nitrogen uptake from the soil was determined by comparing the residual N extracted by intensive leaching from planted units with that of non-planted (reference) units. With the application of dilute N solutions (7 mg N/L), plants reduced N concentrations to near-zero N concentrations within days. Applying N at higher concentrations (70 or 210 mg N/L) resulted in higher initial uptake rates, increased residual soil N levels, and reduced nitrogen uptake efficiency. Contributions of passive uptake to total nitrogen uptake ranged from less than 5% at soil solution concentrations around 3 ppm N to 20% to 30% at concentrations of 60 ppm N.