Most fruit tree species of Prunus exhibit gametophytic self-incompatibility, which is controlled by a single locus with multiple alleles (S-alleles). One interesting aspect of gametophytic self-incompatibility is that it commonly “breaks down” as a result of polyploidy, resulting in self-compatible individuals. This phenomenon is exhibited in the diploid sweet cherry (P. avium) and the tetraploid sour cherry (P. cerasus), in which most cultivars are self-compatible. Recently, S-gene products in pistil of Prunus species were shown to be S-RNases. As sour cherry is one Prunus species, it is likely to possess S-alleles encoding pistil S-RNases. To confirm this, we surveyed stylar extracts of 11 sour cherry cultivars, including six self-compatible and five self-incompatible cultivars, by 2D-PAGE. As expected, all 11 cultivars tested yielded glycoprotein spots similar to S-RNases of other Prunus species in terms of Mr, immunological characteristics, and N-terminal sequences. A cDNA clone encoding one of these glycoproteins was cloned from the cDNA library constructed from styles with stigmas of a self-compatible cultivar, `Erdi Botermo'. Deduced amino acid sequence from the cDNA clone contained two active sites of T2/S type RNases and five conserved regions of rosaceous S-RNases. In order to determine the inheritance of self-incompatibility and S-allele diversity in sour cherry, we conducted genomic DNA blot analysis for sour cherry germplasm collections and mapping populations in MSU using the cDNA as a probe. To date, it appears as if self-compatibility in sour cherry is not simply controlled by a self-fertile allele as demonstrated in other Prunus species.