Height data were collected three times weekly between pinch and flowering to represent `Royalty' rose (Rosa hybrida L.) response to 15 unique treatment combinations of irradiation as photosynthetic photon flux (PPF: 50 to 300 μmol·m-2·s-1), day temperature (DT: 12 to 22 °C), and night temperature (NT: 15 to 25 °C) under constant growth chamber conditions. Combinations were determined according to the rotatable central composite design. A previous full quadratic model approach was compared with a revised approach using a nonlinear Richards function derivative form. This allowed a dynamic change of parameter values for each daily growth iteration by computer. The Richards function assumes nonconstant daily growth rates are proportional to current size; Euler integration enabled additive accumulation of these values. Ratios of the growth constant (k) to the theoretical catabolic constant (m = v+1) caused flexible changes in the growth curve, which were compared with the previous quadratic approach.