Carbon and Nitrogen Budgets in Spring and Fall Tomato Crops

in HortScience

Carbon and nitrogen budgets were determined for `Colonial' (spring) and `Equinox' (fall) tomato (Lycopersicon esculentum Mill.) plants grown on raised beds with black polyethylene mulch and supplied with preplant-N at 0, 67, 134, 202, or 269 kg·ha–1. For both spring and fall experiments, we quantified the partitioning of dry matter, N, and C, and determined marketable and total yield. In the spring study, the concentration of N in leaves, stems, and in total plants increased linearly with level of N fertilization, whereas a quadratic relationship described the amount of N contained in the fruit (maximum with 202 kg·ha–1). Quadratic relationships occurred between rate of fertilization and leaf weight, stem weight, total plant weight, marketable yield, and total yield in the spring study, with maximum values at 134 or 202 kg·ha–1 rates of N fertilization. In the fall crop, fewer significant relationships occurred between dependent variables and rate of N fertilization, and coefficients of determination tended to be much lower than in the spring study. The fraction of N in leaves, stems, and roots (fall study only) was influenced by N fertilization. Effects of N fertilization on the fraction of C partitioned to any plant part was either nonsignificant or significant at P = 0.05. Total yield was related to N fertilization in a quadratic manner, but marketable yield was significantly affected only in the spring study. In both studies, increasing the rate of N fertilization reduced the C: N linearly for all tissues. In all cases, the quantity of N partitioned to vegetative tissue was at least 65% of that partitioned to the fruit, and the quantity of C in the plant was at least 74% of that in the fruit. In conclusion, although N fertilization above 202 kg·ha–1 generally increased the concentration and total amount of N in vegetative tissues, it did not increase yield. Also, the highest rate of N fertilization (269 kg·ha–1) resulted in a much lower efficiency of applied N [defined as: (N plant + N fruit)/N applied], and a much higher level of residual soil nitrate-N.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 89 73 4
PDF Downloads 80 73 5