592 Use of Infrared Thermometry and Heat-pulse Technique for Detection of Water Stress in Apple Trees

in HortScience
View More View Less
  • 1 Department of Horticulture, Michigan State University, East Lansing, MI 48824

The recent development of small portable infrared thermometers has made canopy temperature an easily measured characteristc in the field. Our objective was to correlate a reduction of soil water with foliage temperature and to compare it with other indicators of plant stress (Pn, E, gs, leaf expansion, sap flow). During Summer 1998, we evaluated the responses of potted apple rootstocks (cultivars Budagowski 9, M9, and Mark) to soil water deficit. Irrigation was withheld for 7 days, and the canopy temperature (Tc) was measured daily with an infrared camera. Tc was always higher than air temperature (Ta). Tc between control and stress plants began to differentiate from day 3. In Mark, this difference was maintained until the end of the experiment. However, gas exchange in Mark seemed to be less affected by the stress than in the other two cultivars. At day 7, midday stomatal conductance (gs) was 38.0, 32.3, and 72.0 mmol·m–2·s–1 in Budagowski 9, M9, and Mark, respectively (control values varied between 161.6 and 164.3 mmol·m–2·s–1 for all the cultivars). Heat-pulse sapflow sensors installed on Mark indicated that the speed of the xylem sap was affected by the stress from day 4 (19-26 cm/h for the controls vs. 15–21 cm/h for the stressed plants). Specific details on the physiological data will be presented.