486 Growth Responses of Tomato, Pepper, Broccoli, and Corn Grown in Soils Amended with Ammonium Lignosulfonate

in HortScience
View More View Less
  • 1 Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London Ontario, Canada. N5V 4T3

Ammonium lignosulfonate (ALS) is a liquid waste by-product of pulp and paper industry that may be a source of organic fertilizer. Four plots each of tomato, pepper, broccoli, and corn were set up in a randomized block design on the AAFC-SCPFRC farm in the Spring 1998. Treatments were untreated control, 0.5% (v/w) ALS, and 1% (v/w) ALS. Soil samples were taken at 0, 2, 4, 8, and 22 weeks after amendment incorporation and analyzed for pH, microbial population, and water soluble ions. Soil temperature was measured at 8-cm depth. Leaf chlorophyll content was measured at four sampling dates. Tomato and pepper fruit were evaluated for symptoms of diseases. Soil temperature in 0.5% and 1.% ALS treatments were 2 and 7 °C warmer, respectively, than the control. Soil pH was lower in ALS-treated plots. 1% ALS caused more than 10-fold increase in bacterial population. Fungal populations in both 0.5% and 1% ALS treatments were 10- to 100-fold higher than control soil and continued to be higher to the last sampling date. Weeds were reduced by more than 50% by 0.5% or 1% ALS treatments. Both ALS rates caused an initial increase in NH4, NO3, NO2, K, Na, Cl, PO4, Ca, and SO4. NH4 and SO4 remained elevated for 22 weeks in both ALS treatments. ALS slightly increased chlorophyll content in tomato, pepper, and corn, but not in broccoli plants. The number of diseased tomato fruit in ALS plots were reduced by 50% to 70%. Bacterial spot decreased by more than 50% in both ALS-treated plots, while anthracnose declined by 50% to 75%. There were no significant differences in early and total yield of tomato, peppers, and corn. Early broccoli yield decreased in ALS treatments, while total yield increased over that of control in both ALS treatments.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 106 18 3
PDF Downloads 79 29 1