335 Juvenility Influences Cold Acclimation Ability in Rhododendron Populations

in HortScience
View More View Less
  • 1 Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506
  • 2 David G. Leach Research Station of the Holden Arboretum, Madison, OH 44057

Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold-acclimate. A juvenile period in woody perennials raises the possibility of differences in cold-acclimating ability between juvenile vs. mature (flowering) phases. This study investigated the yearly cold hardiness (CH) changes of rhododendron populations and examined the relationship between leaf freezing tolerance (LFT) and physiological aging. Naturally acclimated leaves (January) from individual plants (parents-R. catawbiense and R. fortunei, F1, F2, and backcross) and F1 population generated from R. catawbiense and R. dichroanthum cross were subjected to controlled freeze-thaw regimes. LFT was assessed by measuring freeze-thaw-induced ion leakage from leaf discs frozen over a range of treatment temperatures. Data were then plotted with a sigmoidal (Gompertz) curve by SAS, to estimate Tmax—the temperature causing maximum rate of injury. Tmax for the 30- to 40-year-old parental plants (catawbiense, fortunei, and dichroanthum) and the F1 `Ceylon' (catawbiense × fortunei) were estimated to be about -52, -32, -16, and -43 °C, respectively. These values were consistent over the 3-year evaluation period. Data indicated the F2 (50 seedlings) and backcross (20 seedlings) populations exhibited significant, yearly Tmax increment (of ≈5-6 °C) from 1996 to 1998 as they aged from 3 to 5 years old. A similar yearly increase was observed in the 12 F1 progenies (compared 2 to 3 years old) of catawbiense × dichroanthum cross. The feasibility of identifying hardy phenotypes at juvenile period and research implications of age-dependent changes in CH will be discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 7 1
PDF Downloads 55 20 0