257 Evaluation of in situ N Mineralization of Composted Organic Wastes Applied to Sandy Soil

in HortScience
View More View Less
  • 1 University of Florida/IFAS, Southwest Florida Research and Education Center, 2686 State Road 29 North, Immokalee, FL 33142-9515

In 1997, 24.7 million t of solid waste were produced in Florida (about 4.3 kg per person per day). If all biodegradable material was composted, 12.4 million t of compost would be produced annually. If this compost was used as a soil amendment in fruit and vegetable production, knowledge of its N mineralization rate would be important to determine the application rate. We measured the field N mineralization of four commercial Florida composts mixed with sandy soil (dry weight rate): Jacksonville (yard trimming compost, 127 t•ha-1), Sumter (municipal solid waste compost, 67 t•ha-1), and Nocatee and Palm Beach (yard trimming and biosolids composts, 63 and 56 t•ha-1). The control treatment was unamended soil. Open-top, 20-cm long PVC columns were filled with soil/compost mixtures and fitted at the bottom with a trap containing cation and anion exchange resin to capture leaching NO3 and NH4-N. The columns were buried in the soil at ground level and incubated in situ for 45 and 90 days in the spring. The resin was extracted with 1 N KCl and the mass of NO3-N and NH4-N adsorbed was determined. A similar procedure measured the NO3-N and NH4-N left in the soil/compost mixture. After 90 days in the field, net N immobilization was observed with Nocatee (-4.3%), Sumter (-3.0%), and Jacksonville (-1.3%) composts, while N mineralized (6.4%) from Palm Beach compost. Where N immobilization occurred, composts had initial C: N greater than 20: 1 and N concentration <1.6%. Mineralization occurred where compost had C: N ratio lower than 20: 1 and N concentration greater than 1.6%.

If the inline PDF is not rendering correctly, you can download the PDF file here.