High Relative Humidity Reduces Anther Dehiscence in Apricot, Peach, and Almond

in HortScience
View More View Less
  • 1 Department of Pomology, University of California, Davis, CA 95616
  • 2 Department of Pomology, University of California, Davis, CA 95616

The regulation of anther dehiscence by relative humidity (RH) was assessed for detached anthers and detached whole flowers from a limited selection of apricot (Prunus armeniaca L.), peach [P. persica (L.) Batsch], and almond [P. dulcis (Mill.) D.A. Webb, syn. P. amygdalus Batsch; P. communis (L.) Arcangeli, non Huds.] genotypes, as well as an almond X peach F2 progeny. Dehiscence was evaluated at 33, 64, 87, 93 and 97% RH for detached anthers, and at 33, 64 and 97% RH for whole detached flowers. Anther dehiscence was suppressed with increasing RH for all genotypes. Apricot anthers showed the greatest dehiscence at low RH and measurable dehiscence at high RH even when detached. Anther dehiscence in almond appeared more suppressed than in apricot at all RH levels tested, being completely suppressed by high RH in detached anthers. Peach genotypes exhibited the full range of variability between apricot and almond patterns. Evidence for transgressive segregation of RH-controlled anther dehiscence was observed in the occurrence of cleistogamy in an almond × peach F2 progeny. Rates of anther dehiscence were approximately linear with change in RH in detached anthers but exhibited a more buffered, step-wise response when detached whole flowers were tested. Results are consistent with field observations, and highlight the low but measurable risk of cleistogamy in these species, as well as opportunities to modify the breeding systems and crossing environments to facilitate controlled hybridization, and to reduce pollination vulnerability to adverse environments.

If the inline PDF is not rendering correctly, you can download the PDF file here.

Contributor Notes

To whom reprint requests should be addressed.
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 40 3
PDF Downloads 164 76 3