Segregation Distortion and Linkage of Mango Isozyme Loci

Y. Aron, H. Czosnek, and S. Gazit
Faculty of Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel

C. Degani
Institute of Horticulture, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel

Additional index words: Mangifera indica, isozyme analysis, non-Mendelian segregation

Abstract. The inheritance of five polymorphic enzyme systems, aconitase (ACO), isocitrate dehydrogenase (IDH), phosphoglucone isomerase (PGI), phosphoglucomutase (PGM), and triosephosphate isomerase (TPI), was studied in selfed progenies of four mango (Mangifera indica L.) cultivars and selections. Only in ‘Haden’ did the allelomorphs of all of the studied loci segregate in the expected Mendelian ratios. Distorted segregations were present in the other cultivars at some loci; three of the five analyzed in ‘Edward’ showed distorted segregations, as did two of three loci in ‘13/1’, and both loci in ‘21/6’. The distorted ratios in ‘Edward’, a descendant of ‘Haden’, did not appear to be associated with gametic selection because pollen viability in both of these cucultivars was high. The five enzymic loci were not linked to one another in ‘Edward’, ‘13/1’, or ‘21/6’. In ‘Haden’, however, Pgi-2 and Ac were linked, with a distance of about 19.4 map units.

Recently, Degani et al. (1990, 1992) detected several polymorphic enzyme systems in mango and used them for the systematic characterization and parentage analysis of various cultivars. These isozyme systems enabled the identification of zygotic seedlings in the progeny of polyembryonic cultivars (Degani et al., 1993; Schnell and Knight, 1992; Truscott, 1992).

Polyembryony in mango was first recorded by Schact in 1859 (Belling, 1908). Seeds of polyembryonic mango trees characteristically contain several nucellar embryos, but may also contain a zygotic embryo. Polyembryonic cultivars are preferred as rootstocks because of the uniformity of their progeny. Zygotic seedlings are generally considered undesirable for this purpose because their performance is unpredictable (Anderson et al., 1991). However, nucellar seedlings are preferred for the propagation of mango rootstocks, the breeder is generally interested in sexual seedlings for the selection of new improved rootstocks.

The genetic control of the polyembryony trait in mango is not yet understood. To study the inheritance of polyembryony in mango, selfed progenies of several monoembryonic and polyembryonic cultivars were produced. Isozyme analysis was used to check the assumption that caging is effective in ensuring selfed progeny, and to identify zygotic seedlings in the progeny of the polyembryonic cultivar. The isozyme data facilitated a study of the genetic control of five isozyme loci in mango. The usefulness of isozymes as trait markers is enhanced if they are distributed throughout the genome, rather than clustered on a few chromosomes (Tanksley and Rick, 1980). Linkage groups were therefore identified by assessing cosegregation of pairs of loci and the segregation ratios of individual loci concurrently (Lee and Ellstrand, 1987). The present study reports the inheritance patterns and linkage relationships of five isozyme loci in mango.

Materials and Methods

Four mango cultivars and selections were studied: ‘Edward’, ‘Haden’, ‘13/1’, and the selection ‘21/6’. ‘Edward’ is a monoembryonic cultivar, thought to be a cross between ‘Haden’ (female) and the polyembryonic ‘Carabao’ (male) (Campbell, 1992). The role of ‘Carabao’ as the male parent of ‘Edward’ has recently been refuted on the basis of isozyme and DNA fingerprint analyses, which, nevertheless, do support ‘Haden’ as the female parent (Adato et al., 1995; Degani et al., 1990). ‘Haden’ is a monoembryonic seedling of the monoembryonic ‘Mulgoa’; isozyme and DNA fingerprint analyses suggest that the polyembryonic ‘Turbentine’ may be the pollen parent (Adato et al., 1995; Campbell, 1992). ‘13/1’ is a polyembryonic cultivar (Gazit and Kadam, 1980), and ‘21/6’ is a monoembryonic offspring of ‘13/1’.

Selfed progeny were obtained by enclosing single trees in cages made of 15-mesh nets (openings of 1.5 x 1.5 mm) at The Hebrew Univ.’s experimental farm in Rehovot, Israel, and at the Besor Experimental Station (West Negev, Israel). A beehive was placed in each cage during flowering. Mature fruit were collected, and seeds were planted at the Volcani Center in 750-ml plastic pots containing peat moss mixed with polystyrene flakes (1:1, v/v) and a slow-release fertilizer. Seedlings were grown in a greenhouse (18°C night/28°C day) and watered daily. Isozyme analysis was used to check the assumption that caging is effective in ensuring selfed progeny (Degani et al., 1992), and to identify zygotic seedlings in the progeny of the polyembryonic cultivar (Degani et al., 1993).

The inheritance of the following polymorphic enzymes was studied: aconitase (ACO; EC 4.2.1.3), isocitrate dehydrogenase (IDH; EC 1.1.1.42), phosphoglucone isomerase (PGI; EC 5.3.1.9), phosphoglucomutase (PGM; EC 2.7.5.1), and triosephosphate isomerase (TPI; EC 5.3.1.1). Extraction of enzymes from leaves, horizontal starch–gel electrophoretic procedures, and isozyme-staining techniques were according to Degani et al. (1990). The computer program LINKAGE-1 (Suiter et al., 1983) was used to test for single-locus segregation and possible linkage between various loci.

Panicles from mango trees at The Hebrew Univ.’s experimental farm and at the Besor Experimental Station were collected during the morning hours and held in an incubator at 20°C until pollen was shed. Pollen viability was determined by microscopic examination after dissecting mature anthers in 2% acetocarmine. Regularly shaped, darkly stained pollen grains were considered viable.

Results and Discussion

In the progeny of three mango cultivars that were homozygous for one or more isozyme loci (‘Haden’ for Pgm-1; ‘21/6’ for Pgi-2, Aco, and Idh; ‘13/1’ for Pgi-2 and Aco), no heterozygous offspring were found. This result supports the conclusion that the progenies obtained from the caged trees were indeed selfed. In the polyembryonic ‘13/1’, zygotic seedling identification was based on the loci Idh, Pgm-1, and Tpi, for which this cultivar is heterozygous. Seedlings homozygous for any of these loci were identified as zygotic. With these three heterozygous loci there was an 88% probability of detecting the zygotic seedlings (Torres et al., 1982).

When the cultivar was heterozygous for a certain locus, Mendelian segregation was expected among the progeny. In progeny tests of ‘Haden’, the five polymorphic isozyme loci segregated in typical Mendelian ratios (Table 1). Deviations from the expected segregation ratios were observed for the progenies of the other three cultivars. Three loci, Tpi, Pgm-1, and Idh, differed significantly (P < 0.05) from Mendelian ratios in at least two cultivars (Table 1). The progeny of ‘Edward’ showed a deficiency of homozygous genotypes aa and bb in Tpi, and a striking absence of the aa genotype in Idh. In Pgm-1, segregation was also skewed. In contrast, for Pgi-2 and Aco, segregation patterns were as expected. Deviations at enzymic loci from the expected segregation ratios have been reported for various fruit trees, e.g., Annona (Lee and Ellstrand, 1987), Citrus (Torres et al., 1985), Corylus (Rovira et al., 1993), Persea (Degani et al., 1986; Torres et al., 1986), and Vitis (Parfitt and Arulasekhar, 1997).
1989). Such segregation distortions are often due to chance (Wendel and Parks, 1982). In other cases, they can be caused by several mechanisms, including linkages between isozyme markers and genes that affect gametic or zygotic selection (Degani et al., 1986; Wendel and Parks, 1984; Zamir and Tadmor, 1986), linkages to lethal alleles (Cousineau and Donnelly, 1992; Parfitt and Arulasek, 1989), and elimination of the chromosome piece carrying these isozyme markers (Vaillancourt and Slinkard, 1992).

'Haden' has been reported to be the female parent of 'Edward' (Campbell, 1992). However, in 'Haden', Pgi-2 and Aco are linked (Table 2), whereas this linkage was not detected in 'Edward'. A possible explanation for such a discrepancy between two closely related cultivars is that they differ from one another by a chromosome rearrangement that split Pgi-2 from Aco in 'Edward'. Such a hypothetical rearrangement would have to be quite small because it had no effect on the segregation pattern of either of these two genes (Table 1). Another indication of the minute-ness of this presumed rearrangement is reflected in the pollen stainability in 'Haden' and 'Edward'. Normally, chromosomal rearrangements in the heterozygous condition reduce gamete viability by nearly 50% (Sybenga, 1972). Pollen stainability in 'Edward' and 'Haden' was high, with no significant differences between them (95% and 93%, respectively).

The loci Tpi and Pgm-1 in both 'Edward' and '216', and Idh in 'Edward' and '13/1', were significantly skewed from the expected Mendelian ratio, possibly due to gametic or zygotic selection (Degani et al., 1986; Wendel and Parks, 1984; Zamir and Tadmor, 1986). However, the pollen viability study revealed high pollen stainability in 'Edward', '216', and '13/1' (95%, 89%, and 85%, respectively), making it unlikely that the deviation from the expected Mendelian ratio was due to gametic selection.

The chromosome number in mango is 2n = 40, and, at meiosis, 20 bivalents are formed, with no univalents or quadri valents being present. Therefore, mango is believed to be an amphidiploid (Mukherjee, 1950). Genetically, it is expected to behave as a dihybrid, and the loci are expected to exhibit Mendelian segregation. The observed segregation pattern provides further insight into how heterozygosity has been maintained in these loci. A heterozygous phenotype can result from three genetic circumstances: 1) Different alleles are present at each locus (aa or AA) and, consequently, heterozygosity is permanent, which obviously was not the case, because all the heterozygous loci segregated. 2) Both loci are heterozygous (Aa or Aa), segregating independently in a dihybrid fashion, 1:1:4:1. This was not the case either, with loci exhibiting deviation from the 1:2:1 ratio. The values for 1:1 segregation were even higher than for the 1:2:1 segregation. 3) Only one loci is heterozygous. This case was supported by the segregation pattern, but we were unable to determine whether the other loci possessed similar alleles or was inactive due to silencing or mutation.

Mango genes are arranged in 20 linkage groups (chromosomes). Recognition of linkage relationships between isozyme loci may help in mango breeding. The five enzyme loci studied here do not appear to be linked to one another in 'Edward' and '13/1'. In 'Haden', however, the loci Pgi-2 and Aco were linked, with a distance of 19.4 map units between them (Table 2). To the best of our knowledge, this is the first report of a linkage between two loci in mango.

Literature Cited

Degani, C., A. Goldring, S. Gashit, and U. Lavi. 1986. Genetic selection during the abscission of

Table 1. Single locus goodness-of-fit to the 1:2:1 ratio at five polymorphic isozyme loci in mango progenies.

<table>
<thead>
<tr>
<th>Cultivar/line</th>
<th>Locus</th>
<th>No. zygotic seedlings</th>
<th>Parental genotypes</th>
<th>Progeny genotypes</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward</td>
<td>Tpi</td>
<td>55</td>
<td>ab</td>
<td>9:aa:4bb:48bb</td>
<td>16.20</td>
<td>0.0004</td>
</tr>
<tr>
<td>21/6</td>
<td></td>
<td>180</td>
<td>ab</td>
<td>27:aa:12bb:33bb</td>
<td>20.40</td>
<td>0.000037</td>
</tr>
<tr>
<td>13/I</td>
<td></td>
<td>42</td>
<td>ab</td>
<td>5:aa:7bb:10bb</td>
<td>4.62</td>
<td>0.099</td>
</tr>
<tr>
<td>Haden</td>
<td></td>
<td>26</td>
<td>ab</td>
<td>6:aa:12bb:8bb</td>
<td>0.46</td>
<td>0.793</td>
</tr>
<tr>
<td>Edward</td>
<td>Pgi-2</td>
<td>55</td>
<td>ab</td>
<td>9:aa:31bb:15bb</td>
<td>2.20</td>
<td>0.478</td>
</tr>
<tr>
<td>Haden</td>
<td></td>
<td>26</td>
<td>ab</td>
<td>4:aa:14bb:8bb</td>
<td>1.38</td>
<td>0.500</td>
</tr>
<tr>
<td>Edward</td>
<td>Pgm-1</td>
<td>55</td>
<td>ac</td>
<td>14:aa:37bc:6cc</td>
<td>10.20</td>
<td>0.006</td>
</tr>
<tr>
<td>21/6</td>
<td></td>
<td>180</td>
<td>ac</td>
<td>6:aa:88bc:24cc</td>
<td>21.60</td>
<td>0.0002</td>
</tr>
<tr>
<td>13/I</td>
<td></td>
<td>42</td>
<td>ac</td>
<td>17:aa:20ac:5cc</td>
<td>6.95</td>
<td>0.030</td>
</tr>
<tr>
<td>Edward</td>
<td>Aco</td>
<td>55</td>
<td>ac</td>
<td>13:aa:28ac:14cc</td>
<td>0.05</td>
<td>0.973</td>
</tr>
<tr>
<td>Haden</td>
<td></td>
<td>26</td>
<td>ac</td>
<td>9:aa:15ac:2cc</td>
<td>4.38</td>
<td>0.111</td>
</tr>
<tr>
<td>Edward</td>
<td>Idh</td>
<td>55</td>
<td>ac</td>
<td>0:aa:38ac:17cc</td>
<td>18.53</td>
<td>0.00009</td>
</tr>
<tr>
<td>13/I</td>
<td></td>
<td>42</td>
<td>ac</td>
<td>2:aa:10ac:30cc</td>
<td>48.86</td>
<td>0.00000</td>
</tr>
<tr>
<td>Haden</td>
<td></td>
<td>26</td>
<td>ac</td>
<td>4:aa:16ac:6cc</td>
<td>1.69</td>
<td>0.429</td>
</tr>
</tbody>
</table>

Table 2. Linkage analysis between pairs of mango isozyme loci.

<table>
<thead>
<tr>
<th>Cultivar/line</th>
<th>No. zygotic seedlings</th>
<th>Locus pair</th>
<th>χ^2</th>
<th>P</th>
<th>Recombination value ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edward</td>
<td>55</td>
<td>Tpi/Pgi-2</td>
<td>4.866</td>
<td>0.301</td>
<td>0.388 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tpi/Aco</td>
<td>2.702</td>
<td>0.608</td>
<td>0.422 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pgi-2/Pgm-1</td>
<td>7.854</td>
<td>0.097</td>
<td>0.309 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pgi-2/Aco</td>
<td>5.050</td>
<td>0.281</td>
<td>0.482 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pgm-1/Idh</td>
<td>2.329</td>
<td>0.675</td>
<td>0.391 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aco/Idh</td>
<td>1.663</td>
<td>0.797</td>
<td>0.476 ± 0.06</td>
</tr>
<tr>
<td>13/I</td>
<td>42</td>
<td>Tpi/Pgm-1</td>
<td>9.554</td>
<td>0.048</td>
<td>0.418 ± 0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tpi/Idh</td>
<td>4.853</td>
<td>0.302</td>
<td>0.370 ± 0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tpi/Pgi-2</td>
<td>7.331</td>
<td>0.119</td>
<td>0.429 ± 0.09</td>
</tr>
<tr>
<td>Haden</td>
<td>26</td>
<td>Tpi/Idh</td>
<td>3.904</td>
<td>0.419</td>
<td>0.499 ± 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tpi/Aco</td>
<td>4.537</td>
<td>0.338</td>
<td>0.419 ± 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pgi-2/Idh</td>
<td>3.375</td>
<td>0.497</td>
<td>0.458 ± 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pgi-2/Aco</td>
<td>15.393</td>
<td>0.004</td>
<td>0.194 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Idh/Aco</td>
<td>1.709</td>
<td>0.789</td>
<td>0.499 ± 0.09</td>
</tr>
</tbody>
</table>

Only those pairs in which at least one or both loci segregated normally were included in the analysis (Bailey, 1961).
Gazit, S. and A. Kadman. 1980. 13-1 mango root-
Lee, J.M. and N.C. Eilstrand. 1987. Inheritance and
linkage of isozymes in the cherimoya. J. Hered.
isozyme diversity for GPI and PGM among
491.
Inheritance and linkage relationships of ten
86:322–328.
Schnell, R.J. and R.J. Knight. 1992. Frequency of
zygotic seedlings from five polyembryonic
Linkage-1: A Pascal computer program for the
detection and analysis of genetic linkage. J.
Hered. 74:203–204.
Sybenga, J. 1972. General cytogenetics. N. Hol-
linkage map of the tomato. Applications in ge-
170.
Torres, A.M., T. Mau-Lastavicka, V. Vithanage,
and M. Sedgley. 1986. Segregation distortion
and linkage analysis of hand-pollinated avocado.
J. Hered. 77:445–450.
Torres, A.M., T. Mau-Lastavicka, T.E. Williams,
and linkage of Citrus and Poncirus isozyme
1982. Citrus isozymes. Genetics and distinguishing
nuellar from zygotic seedlings. J. Hered.
73:335–339.
Truscott, M. 1992. Biochemical screening of poly-
plloid mango seedlings. CSFRI Info. Bul. 23:17–
18.
Vaillancourt, R.E. and A.E. Slinkard. 1992. Inherit-
ance of new genetic markers in lentil (Lens
of isozyme variation in Camellia japonica L. J.
Hered. 73:197–204.
Wendel, J.F. and C.R. Parks. 1984. Distorted segre-
gation and linkage of alcohol dehydrogenase
22:739–748.
Zamir, D. and Y. Tadmor. 1986. Unequal segre-
147:355–358.