Sodium Recycling through Plants for Bioregenerative Life Support

in HortScience
View More View Less
  • 1 1Dynamac Corp., Kennedy Space Center, FL 32899
  • | 2 2NASA Biomedical Operations Office, Kennedy Space Center, FL 32899

As humans explore the solar system, life support will need to be increasingly self-sufficient. Growing higher plants and using recycling technologies can improve self-sufficiency. Sodium is an essential mineral for humans, but not typically for plants. Recycling sodium back to humans through food crops may reduce the need for sodium supplements in the human diet. However, if sodium from waste streams is added to the plant system in greater quantities than it is removed, then plant toxic levels may result. The recommended daily sodium requirement is 3000 mg per person. Based on a 20-m2 growing area per person, 150 mg·m–2 sodium would need to be removed each day. Most crops will not remove enough salt when grown at very low sodium levels; however, when grown in 20 mM sodium, plant uptake may meet the 3000 mg/d human sodium requirement without affecting yields. We grew four different salad crops (lettuce, radish, spinach, and table beet) hydroponically and calculated plant uptake rates and partitioning with 0, 20, 40, or 80 mM sodium supplemented nutrient solutions (corresponding to ≈1.4, 4.0, 8.0, and 13.0 dS·m–1 electrical conductivity). Sodium at 40 and 80 mM reduced edible yields. Sodium replaced tissue potassium in most cases, whereas calcium and magnesium concentrations were much less affected, particularly at 20 mM sodium. This data will be used to model sodium flows within a bioregenerative life support system and determine the feasibility of sodium recycling using food crops.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 9 1
PDF Downloads 48 16 2