Optimization of Intracanopy Lighting for Hydroponically Grown Cowpea in Controlled Environments

in HortScience

A major source of power consumption in controlled-environment crop production is plant-growth lighting. Methods developed to minimize this source of power consumption will reduce the negative environmental impact of crop production through more-efficient management of non-renewable resources. One such method uses “intracanopy lighting,” in which the plants are allowed to grow through multiple levels of low-intensity lamps to irradiate the understory that normally is shaded when traditional overhead lighting is used. Early results with cowpea (Vigna unguiculata L. Walp `IT87D-941-1') indicate a significant reduction in net power consumption within a given growth area or volume while enhancing the harvest index (HI = percent edible biomass). Incorporation of mylar reflectors and manipulation of lamp geometries for more-efficient use of available photosynthetically active radiation, while maintaining low power consumption are the focus of present experiments. Photosynthetic rates by leaves of different ages and positions within the canopy are measured as a way of determining lighting efficiency. The productivity parameters HI, edible yield rate (EYR = gDW × m–2 × day–1), yield efficiency rate (YER = gDW edible × m–2 × day–1 [gDW non-edible]-1), energy conversion efficiency (ECE = EYR × [kW·h]–1), and energy partition efficiency (EPE = YER × [kW·h]–1) express the costs of edible biomass production in terms of the spatial, temporal, energetic, and non-edible biomass penalties. [Research supported in part by NASA grant NAGW-2329.]

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 31 12 0
PDF Downloads 39 15 1