Effect of Water and Nutrient Stresses on Apple Rootstock Growth, Respiration, and Capacitance

in HortScience
View More View Less
  • 1 Dept. of Fruit and Vegetable Science, Cornell Univ., Ithaca, NY 14853

We are evaluating techniques for measuring intact apple rootstock (Malus domestica cv. M.9 and MM.111) responses to low, medium, and high soil-water potential, and low, medium, and high concentrations of N, K, and Ca, in sterile sand culture. Root respiration and functional surface area were estimated with an IRGA chamber and electric capacitance meter, respectively. Root length and surface area were determined by digital image analysis of extracted root systems. Low N supply reduced root respiration, while low K levels increased respiration relative to well-nourished controls. Calcium effects were inconsistent among the rootstocks. Total root length and respiration rates of MM.111 were higher than M.9, but M.9 had higher root:shoot ratios. Root capacitance was correlated with total root length (P < 0.001); and M.9 root systems had greater capacitance than MM.111. In a related field experiment, root growth and respiration of 4-year-old `Mutsu' apple trees on M.9 rootstock were measured in soil under low and moderate drought stress established by rain exclusion shelters, using capacitance and IRGA meters, and a minirhizotron video camera inserted into Plexiglas tubes transecting the rhizosphere. Root growth rates peaked in July (coinciding with maximal shoot growth), then declined gradually during late summer; but variability among trees was greater than among water stress treatments. Root/soil respiration maxima of 4.5 μmol CO2/m2 per s occurred in mid June, late July (when new root counts peaked), and the end of August (when root turnover was maximal).

If the inline PDF is not rendering correctly, you can download the PDF file here.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 10 1
PDF Downloads 52 19 3