The relationship between initial total non-structural carbohydrate concentration (TNCi) in marigold seedlings, night temperature, and night length were evaluated. Seedlings containing an average of 7.2, 18.1, and 23.5 mg/100 mg dwt of nonstructural carbohydrate (TNC) at sunset were treated with night temperatures of low (10°C), medium (17°C), and high (24°C). Starch and soluble sugars were determined at intervals during the night. TNC concentration at the end of the night is a function of the night temperature, TNCi concentration at sunset, and the night length. A model describing the relationship of these variables and their interactions was derived to estimate TNC concentration at any time during the night. This model when solved for temperature (t) establishes a temperature that will regulate the metabolic rate so the TNC concentration is metabolized efficiently to some minimum concentration by the end of the dark period. t = (–2.93 + 1.14 TNCi + 0.74 T – TNC – 0.48 TNCi * T)/(–0.18 + 0.011 TNCi + 0.04*T), R2 = 0.88**). Thus, by knowing TNCi (possibly by near-infrared spectroscopy), the length of the night, and, assuming some minimum concentration for TNC by the end of the dark period, the night temperature is established.