An Ethylene-inducible Lipoxygenase Gene from Potato Leaves

in HortScience
View More View Less
  • 1 Dept. of Horticulture, Iowa State Univ., Ames, IA 50011-1100

Due to apparent participation of plant lipoxygenases (LOXs) in the biosynthetic pathways for jasmonic acid, methyl jasmonate, traumatin, and several C-6 volatile compounds, LOXs are believed to have a role in senescence, plant growth and development, and wound- and pathogen-induced defense responses. Multiple functions that are ascribed to this enzyme family are in accordance with the heterogeneity of LOX isozyme forms. It is possible that different LOX isoforms may be involved in different physiological processes. In our search for a gene that encodes a LOX isozyme form specifically involved in potato defense responses against pests and pathogens, we have screened an abscisic acid-induced potato leaf cDNA library, and we have isolated, sequenced, and characterized a cDNA clone that we have designated POTLX-3. The high sequence homology of our cDNA clone to other reported plant LOX genes provided evidence that POTLX-3 is a lipoxygenase. This cDNA clone represents a novel potato LOX gene in that it shares the least nucleotide and amino acid sequence homology to other isolated potato LOX genes. Northern analysis indicated that POTLX-3 transcripts did not accumulate in untreated potato leaves, but it was highly induced by treatment with physiological levels of ethylene. Northern analysis also was performed to study whether the POTLX-3 mRNA accumulation could be induced by other plant hormones that affect expression of the other plant LOX and defense-related genes. Treatment of potato leaves with methyl jasmonate, abscisic acid, gibberellic acid, auxin (NAA), and cytokinin (BA) did not induce POTLX-3 gene expression. Because the pattern of POTLX-3 gene expression is similar to that of pathogenesis-related (PR) proteins, especially the PR-1 and PR-5 groups, we suspect that POTLX-3 may be involved specifically in ethylene-induced defense responses against pathogens.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 14 2
PDF Downloads 62 24 4