Macroand Micronutrient Levels Associated with Nitrogen and Sulfur Applications to `Freedom Red' Poinsettia

in HortScience
View More View Less
  • 1 Dept. of Horticulture, Univ. of Nebraska, Lincoln, NE 68583-0724

In order to understand the effects of reduced nitrogen and sulfur on overall poinsettia plant growth and development, experiments were run to determine the relationship, if any, between nitrogen and sulfur applied and other macroand micronutrients. Cuttings of `Freedom Red' (Euphorbia pulcherrima Willd. ex Klotzsch) were grown vegetatively in a peat:perlite:vermiculite mix during the fall and spring. Three levels of sulfur (0, 12.5, 25 ppm) were applied in combination with four levels of nitrogen (50, 100, 200, 275 ppm). The experimental design was a randomized complete block. Leaf samples were analyzed using LECO for nitrogen and ICP-ES for sulfur. X-ray fluorescence was used to determine trends in the nutrient concentration of other macronutrients and micronutrients. Nutrient analyses indicated that all nutrients were present in sufficient quantities. Leaf concentrations of nitrogen, sulfur, potassium, and copper were distinctly higher in spring and fall, while phosphorus, calcium, magnesium, and iron concentrations were higher in fall. The typically subtle effects of sulfur were most obvious in magnesium and calcium leaf concentrations. Phosphorus and calcium concentrations increased at lower levels of applied nitrogen. Concentrations of boron, copper, and manganese also increased strikingly at lower levels of applied nitrogen. Apparently when levels of nitrogen less than 200 ppm are applied, micronutrient uptake increases, suggesting the potential of either luxury consumption or possible toxic effects if too little nitrogen is supplied.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 11 1
PDF Downloads 104 30 4