Temperature and Phosphorus Source Affect Phosphorus Retention by a Pine Bark-based Container Medium

in HortScience
View More View Less
  • 1 Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078-0511

These studies were conducted to determine the effect of 1) temperature on P leaching from a soilless medium amended with various P fertilizers, 2) water application volume on P leaching, and 3) various fertilizers on P leaching during production and growth of marigolds (Tagetes erecta L. `Hero Flame'). Increasing temperature linearly decreased leaching fraction; however, total P leached from the single (SSP) or triple (TSP) superphosphate-amended medium did not differ regardless of temperature. Despite a smaller leaching fraction at higher temperatures and no change in the total P leached, P was probably leached more readily at higher temperatures. More P was leached from the medium amended with uncoated monoammonium phosphate (UCP) than from the medium containing polymer-coated monoammonium phosphate (CTP) at all temperatures, and more P was leached from UCP-amended medium at lower temperatures than at higher temperatures. More P was leached from TSP- than from SSP-amended medium and from UCP- than from CTP-amended medium regardless of the water volume applied, but leachate P content increased linearly as water application volume increased for all fertilizers tested. Plant dry weights did not differ regardless of P source. Leachate electrical conductivity (EC) was lower with TSP than with SSP. Leachate EC was also lower with CTP than with UCP. A higher percentage of P from controlled release fertilizer was taken up by plants rather than being leached from the medium compared to P from uncoated fertilizers.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 18 0
PDF Downloads 104 51 3